892 resultados para Atterberg settling tubes
Resumo:
Our main result is a new sequential method for the design of decentralized control systems. Controller synthesis is conducted on a loop-by-loop basis, and at each step the designer obtains an explicit characterization of the class C of all compensators for the loop being closed that results in closed-loop system poles being in a specified closed region D of the s-plane, instead of merely stabilizing the closed-loop system. Since one of the primary goals of control system design is to satisfy basic performance requirements that are often directly related to closed-loop pole location (bandwidth, percentage overshoot, rise time, settling time), this approach immediately allows the designer to focus on other concerns such as robustness and sensitivity. By considering only compensators from class C and seeking the optimum member of that set with respect to sensitivity or robustness, the designer has a clearly-defined limited optimization problem to solve without concern for loss of performance. A solution to the decentralized tracking problem is also provided. This design approach has the attractive features of expandability, the use of only 'local models' for controller synthesis, and fault tolerance with respect to certain types of failure.
Resumo:
The peaking of most oil reserves and impending climate change are critically driving the adoption of solar photovoltaic's (PV) as a sustainable renewable and eco-friendly alternative. Ongoing material research has yet to find a breakthrough in significantly raising the conversion efficiency of commercial PV modules. The installation of PV systems for optimum yield is primarily dictated by its geographic location (latitude and available solar insolation) and installation design (tilt, orientation and altitude) to maximize solar exposure. However, once these parameters have been addressed appropriately, there are other depending factors that arise in determining the system performance (efficiency and output). Dust is the lesser acknowledged factor that significantly influences the performance of the PV installations. This paper provides an appraisal on the current status of research in studying the impact of dust on PV system performance and identifies challenges to further pertinent research. A framework to understand the various factors that govern the settling/assimilation of dust and likely mitigation measures have been discussed in this paper. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The flocculation and filtration characteristics of typical Indian iron ore fines have been studied using starch as flocculant in the presence of an inorganic electrolyte, namely calcium chloride. The effect of various parameters such as pH, starch and calcium chloride concentrations and pulp density on the settling and filtration rates, turbidity of the supernatant and on residual starch and calcium ion concentrates has been investigated through a statistical design and analysis approach and subsequently optimised on a laboratory scale. The adsorption mechanisms of starch onto haematite have been elucidated through adsorption density measurements, infrared and X-ray photoelectron spectroscopic techniques. The rheological property of the polymer solutions of relevance to flocculations has also been investigated. Further, the role of metal ion-starch interactions in the bulk solution, has been studied. In order to understand the nature of polymer adsorption at the double-layer, electrokinetic studies have been carried out with the iron ore mineral samples using starch and calcium chloride. Based on the above findings, selective floculaation tests on artificial mixtures of iron ore minerals have been carried out to determine the separation efficiencies from the view point of alumina and silica removal from haematite as well as the control of alumina: silica ratio in Indian iron ores.
Resumo:
Three compounds have been found to be stable in the pseudobinary system Na2O---(α)Al2O3 between 825 and 1400 K; two nonstoichiometric phases, β-alumina and β″-alumina, and NaAlO2. The homogeneity of β-alumina ranges from 9.5 to 11 mol% Na2O, while that of β″-alumina from 13.3 to 15.9 mol% Na2O at 1173 K. The activity of Na2O in the two-phase fields has been determined by a solid-state potentiometric technique. Since both β- and β″-alumina are fast sodium ion conductors, biphasic solid electrolyte tubes were used in these electrochemical measurements. The open circuit emf of the following cells were measured from 790 to 980 K: [GRAPHICS] The partial molar Gibbs' energy of Na2O relative to gamma-Na2O in the two-phase regions can be represented as: DELTA-GBAR(Na2O)(alpha- + beta-alumina) = -270,900 + 24.03 T, DELTA-GBAR(Na2O)(beta- + beta"-alumina) = -232,700 + 56.19 T, and DELTA-GBAR(Na2O)(beta"-alumina + NaAlO2) = -13,100 - 4.51 T J mol-1. Similar galvanic cells using a Au-Na alloy and a mixture of Co + CoAl(2+2x)O4+3x + (alpha)Al2O3 as electrodes were used at 1400 K. Thermodynamic data obtained in these studies are used to evaluate phase relations and partial pressure of sodium in the Na2O-(alpha) Al2O3 system as a function of oxygen partial pressure, composition and temperature.
Resumo:
The equilibrium between cell proliferation, differentiation, and apoptosis is crucial for maintaining homeostasis in epithelial tissues. In order for the epithelium to function properly, individual cells must gain normal structural and functional polarity. The junctional proteins have an important role both in binding the cells together and in taking part in cell signaling. Cadherins form adherens junctions. Cadherins initiate the polarization process by first recognizing and binding the neighboring cells together, and then guiding the formation of tight junctions. Tight junctions form a barrier in dividing the plasma membranes to apical and basolateral membrane domains. In glandular tissues, single layered and polarized epithelium is folded into tubes or spheres, in which the basal side of the epithelial layer faces the outer basal membrane, and the apical side the lumen. In carcinogenesis, the differentiated architecture of an epithelial layer is disrupted. Filling of the luminal space is a hallmark of early epithelial tumors in tubular and glandular structures. In order for the transformed tumor cells to populate the lumen, enhanced proliferation as well as inhibition of apoptosis is required. Most advances in cancer biology have been achieved by using two-dimensional (2D) cell culture models, in which the cells are cultured on flat surfaces as monolayers. However, the 2D cultures are limited in their capacity to recapitulate the structural and functional features of tubular structures and to represent cell growth and differentiation in vivo. The development of three-dimensional (3D) cell culture methods enables the cells to grow and to be studied in a more natural environment. Despite the wide use of 2D cell culture models and the development of novel 3D culture methods, it is not clear how the change of the dimensionality of culture conditions alters the polarization and transformation process and the molecular mechanisms behind them. Src is a well-known oncogene. It is found in focal and adherens junctions of cultured cells. Active src disrupts cell-cell junctions and interferes with cell-matrix binding. It promotes cell motility and survival. Src transformation in 2D disrupts adherens junctions and the fibroblastic phenotype of the cells. In 3D, the adherens junctions are weakened, and in glandular structures, the lumen is filled with nonpolarized vital cells. Madin-Darby canine kidney (MDCK) cells are an epithelial cell type commonly used as a model for cell polarization. Its-src-transformed variants are useful model systems for analyzing the changes in cell morphology, and they play a role in src-induced malignant transformation. This study investigates src-transformed cells in 3D cell cultures as a model for malignant transformation. The following questions were posed. Firstly: What is the role of the composition and stiffness of the extracellular matrix (ECM) on the polarization and transformation of ts v-src MDCK cells in 3D cell cultures? Secondly: How do the culture conditions affect gene expression? What is the effect of v-src transformation in 2D and in 3D cell models? How does the shift from 2D to 3D affect cell polarity and gene expression? Thirdly: What is the role of survivin and its regulator phosphatase and tensin homolog protein (PTEN) in cell polarization and transformation, and in determining cell fate? How does their expression correlate with impaired mitochondrial function in transformed cells? In order to answer the above questions, novel methods of culturing and monitoring cells had to be created: novel 3D methods of culturing epithelial cells were engineered, enabling real time monitoring of a polarization and transformation process, and functional testing of 3D cell cultures. Novel 3D cell culture models and imaging techniques were created for the study. Attention was focused especially on confocal microscopy and live-cell imaging. Src-transformation disturbed the polarization of the epithelium by disrupting cell adhesion, and sensitized the cells to their environment. With active src, the morphology of the cell cluster depended on the composition and stiffness of the matrix. Gene expression studies revealed a broader impact of src transformation than mere continuous activity of src-kinase. In 2D cultures, src transformation altered the expression of immunological, actin cytoskeleton and extracellular matrix (ECM). In 3D, the genes regulating cell division, inhibition of apoptosis, cell metabolism, mitochondrial function, actin cytoskeleton and mechano-sensing proteins were altered. Surprisingly, changing the culture conditions from 2D to 3D affected also gene expression considerably. The microarray hit survivin, an inhibitor of apoptosis, played a crucial role in the survival and proliferation of src-transformed cells.
Resumo:
Equilibrium sediment volume tests are conducted on field soils to classify them based on their degree of expansivity and/or to predict the liquid limit of soils. The present technical paper examines different equilibrium sediment volume tests, critically evaluating each of them. It discusses the settling behavior of fine-grained soils during the soil sediment formation to evolve a rationale for conducting the latest version of equilibrium sediment volume test. Probable limitations of equilibrium sediment volume test and the possible solution to overcome the same have also been indicated.
Resumo:
Soil properties and their behavior, apart from stress history, are influenced markedly by physicochemical characteristics of the constituent clay and nonclay minerals and their relative proportions. Atterberg limits and Skempton’s colloidal activity, which are simple quantitative parameters, reflect the composite effects of the soil constituents and their interactions with pore fluid. Micromechanistic interpretations of these parameters have been provided in this paper. It has been shown that, in general, the liquid limit of fine-grained soils reflects the physicochemical potential and that each of the factors of Skempton’s colloidal activity are interdependent. It has been illustrated that property correlations with colloidal activity, as well as with Atterberg limits, result in involved interrelationships due to the interdependence of the parameters.
Resumo:
Soil properties and their behavior, apart from stress history, are influence markedly by physicochemical characteristics of the constituent clay and nonclay minerals and their relative proportions. Atterberg limits and Skempton's colloidal activity, which are simple quantitative parameters, reflect the composite effects of the soil constituents and their interactions with pore fluid. Micromechanistic interpretations of these parameters have been provided in this paper. It has been shown that, in general, the liquid limit of fine-grained soils reflects the physicochemical potential and that each of the factors of Skempton's colloidal activity are interdependent. It has been illustrated that property correlations with colloidal activity, as well as with Atterberg limits, result in involved interrelationships due to the interdependence of the parameters.
Resumo:
The effect of turbulence on the nonaxisymmetric flux rings of equipartition field strength in bipolar magnetic regions is studied on the basis of the small-scale momentum exchange mechanism and the giant cell drag combined with the Kelvin-Helmholtz drag mechanism. It is shown that the giant cell drag and small-scale momentum exchange mechanism can make equipartition flux loops emerge at low latitudes, in addition to making them exhibit the observed tilts. However, the sizes of the flux tubes have to be restricted to a couple of hundred kilometers. An ad hoc constraint on the footpoints of the flux loops is introduced by not letting them move in the phi direction, and it is found that equipartition fields of any size can be made to emerge at sunspot latitudes with the observed tilts by suitably adjusting the footpoint separations.
Resumo:
Experiments have been carried out to optimize the yields of carbon nanotubes obtained by the arc-evaporation of graphite. Other types of carbon particles such as nanocrystalline graphite usually present along with the nanotubes are readily removed by heating the material in oxygen around 763 K. Clean nanotubes so obtained have been characterized by X-ray diffraction. The clean tubes are thermally more stable than graphite or fullerenes. The tips of carbon nanotubes are opened by reaction with oxygen, but more interestingly, when the oxygen produced by the decomposition of a metal oxide is used to open the tube tips, the metal formed in the process enters the nanotube. Electrical resistance of pressed pellets of clean tubes is not unlike that of graphite. Tunnelling conductance measurements on isolated tubes characterized by means of scanning tunnelling microscopy however show that the conductance gap increases with decreasing tube diameter.
Resumo:
The temperature and magnetic field dependence of conductivity has been used to probe the inter-tube transport in multiwall carbon nanotubes (MWNTs). The scanning electron microscopy images show highly aligned and random distribution of MWNTs. The conductivity in aligned carbon nanotube (ACNT) and random carbon nanotube (RCNT) samples at low temperature follows T-1/2 (at T < 8 K) and T-3/4 (at T > 8 K) dependence in accordance with the weak localization and electron-electron (e-e) interaction model. The values of diffusion coefficient in ACNT and RCNT are 0.25 x 10(-2) and 0.71 x 10(-2) cm(2) s(-1), respectively, indicating that larger number of inter-tube junctions in later enhances the bulk transport. The positive magnetoconductance (MC) data in both samples show that the weak localization contribution is dominant. However, the saturation of MC at higher fields and lower temperatures indicate that e-e interaction is quite significant in RCNT. The T-3/4 and T-1/2 dependence of inelastic scattering length (l(in)) in ACNT and RCNT samples show that the inelastic e-e scattering is more important in aligned tubes. (C) 2011 American Institute of Physics. doi:10.1063/1.3552911]
Resumo:
Identification of conformation-specific epitopes of hCG beta has been done using a simple batch method, Chemically or enzymatically-modified hCG beta has been prepared in a batch and the effect of modifications on the integrity of different epitope regions has been investigated in a quantitative manner using monoclonal antibodies (MAbs) immobilized on plastic tubes from culture supernatants. Based on the extent of damage done to different regions by different modifications, three conformation-specific epitopes of hCG beta have been identified. The method has been shown to have important advantages over the existing methods on many considerations, Using this approach, these epitopes have been shown to be at/near the receptor-binding region.
Resumo:
A single step solid phase radioimmunoassay (SS-SPRIA) has been developed for human chorionic,gonadotropin (hCG) using monoclonal antibodies (MAb) from culture media adsorbed immunochemically on plastic tubes. The assays have been found to be very simple in terms of operation and do not demand purification of MAbs. Several MAbs which do not show any displacement in liquid phase RIA and ELISA provide a satisfactory SS-SPRIA. Our investigations revealed that the assumption regarding the stability of the primary Mab-Ag complex during incubation and washing steps in ELISAs is not strictly valid for dissociable MAbs. A comparison of different assay systems suggests that the single step SPRIA offers additional advantages over conventionally used multistep ELISA procedures and provides a quantitative probe for the analysis of epitope-paratope interactions.
Resumo:
This paper critically appraises the limitations of the liquid-limit water content of clayey soils determined conventionally either by percussion cup or by the cone penetration method. It is shown that the conventional liquid limit and plastic limit are arbitrary, strength-based water contents and that they cannot represent the plasticity limits, and that the state of the soil-water system at the conventional liquid limit does not correspond to a stress-free reference state. The present investigation identifies three characteristic limiting water contents for a soil-water system which have well-defined, unique mechanisms controlling them, namely the free swell limit, settling limit and shrinkage limit. Simple procedures for the determination of the free swell limit and settling limit of natural soils are presented. The settling limit is shown to be the 'real liquid limit' of any clayey soil. With a number of experimental illustrations, it is clearly shown that the settling limit represents the maximum water-holding capacity of clayey soils and that it corresponds to the stress-free reference state.
Resumo:
A model representing the vibrations of a coupled fluid-solid structure is considered. This structure consists of a tube bundle immersed in a slightly compressible fluid. Assuming periodic distribution of tubes, this article describes the asymptotic nature of the vibration frequencies when the number of tubes is large. Our investigation shows that classical homogenization of the problem is not sufficient for this purpose. Indeed, our end result proves that the limit spectrum consists of three parts: the macro-part which comes from homogenization, the micro-part and the boundary layer part. The last two components are new. We describe in detail both macro- and micro-parts using the so-called Bloch wave homogenization method. Copyright (C) 1999 John Wiley & Sons, Ltd.