961 resultados para Asymptotic exponentiality
Resumo:
We consider a discrete time system with packets arriving randomly at rate lambda per slot to a fading point-to-point link, for which the transmitter can control the number of packets served in a slot by varying the transmit power. We provide an asymptotic characterization of the minimum average delay of the packets, when average transmitter power is a small positive quantity V more than the minimum average power required for queue stability. We show that the minimum average delay will grow either as log (1/V) or 1/V when V down arrow 0, for certain sets of values of lambda. These sets are determined by the distribution of fading gain, the maximum number of packets which can be transmitted in a slot, and the assumed transmit power function, as a function of the fading gain and the number of packets transmitted. We identify a case where the above behaviour of the tradeoff differs from that obtained from a previously considered model, in which the random queue length process is assumed to evolve on the non-negative real line.
Resumo:
The optimal tradeoff between average service cost rate and average delay, is addressed for a M/M/1 queueing model with queue-length dependent service rates, chosen from a finite set. We provide an asymptotic characterization of the minimum average delay, when the average service cost rate is a small positive quantity V more than the minimum average service cost rate required for stability. We show that depending on the value of the arrival rate, the assumed service cost rate function, and the possible values of the service rates, the minimum average delay either a) increases only to a finite value, b) increases without bound as log(1/V), or c) increases without bound as 1/V, when V down arrow 0. We apply the analysis to a flow-level resource allocation model for a wireless downlink. We also investigate the asymptotic tradeoff for a sequence of policies which are obtained from an approximate fluid model for the M/M/1 queue.
Exact internal controllability for a hyperbolic problem in a domain with highly oscillating boundary
Resumo:
In this paper, by using the Hilbert Uniqueness Method (HUM), we study the exact controllability problem described by the wave equation in a three-dimensional horizontal domain bounded at the bottom by a smooth wall and at the top by a rough wall. The latter is assumed to consist in a plane wall covered with periodically distributed asperities whose size depends on a small parameter epsilon > 0, and with a fixed height. Our aim is to obtain the exact controllability for the homogenized equation. In the process, we study the asymptotic analysis of wave equation in two setups, namely solution by standard weak formulation and solution by transposition method.
Resumo:
We consider nonparametric or universal sequential hypothesis testing when the distribution under the null hypothesis is fully known but the alternate hypothesis corresponds to some other unknown distribution. These algorithms are primarily motivated from spectrum sensing in Cognitive Radios and intruder detection in wireless sensor networks. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. The algorithms are first proposed for discrete alphabet. Their performance and asymptotic properties are studied theoretically. Later these are extended to continuous alphabets. Their performance with two well known universal source codes, Lempel-Ziv code and KT-estimator with Arithmetic Encoder are compared. These algorithms are also compared with the tests using various other nonparametric estimators. Finally a decentralized version utilizing spatial diversity is also proposed and analysed.
Resumo:
We consider extremal limits of the recently constructed ``subtracted geometry''. We show that extremality makes the horizon attractive against scalar perturbations, but radial evolution of such perturbations changes the asymptotics: from a conical-box to flat Minkowski. Thus these are black holes that retain their near-horizon geometry under perturbations that drastically change their asymptotics. We also show that this extremal subtracted solution (''subttractor'') can arise as a boundary of the basin of attraction for flat space attractors. We demonstrate this by using a fairly minimal action (that has connections with STU model) where the equations of motion are integrable and we are able to find analytic solutions that capture the flow from the horizon to the asymptotic region. The subttractor is a boundary between two qualitatively different flows. We expect that these results have generalizations for other theories with charged dilatonic black holes.
Resumo:
Frohlich, Morchio and Strocchi long ago proved that the Lorentz invariance is spontaneously broken in QED because of infrared effects. We develop a simple model where the consequences of this breakdown can be explicitly and easily calculated. For this purpose, the superselected U(1) charge group of QED is extended to a superselected ``Sky'' group containing direction-dependent gauge transformations at infinity. It is the analog of the Spi group of gravity. As Lorentz transformations do not commute with Sky, they are spontaneously broken. These Abelian considerations and model are extended to non-Abelian gauge symmetries. Basic issues regarding the observability of twisted non-Abelian gauge symmetries and of the asymptotic ADM symmetries of quantum gravity are raised.
Resumo:
In this paper, a nonlinear suboptimal detector whose performance in heavy-tailed noise is significantly better than that of the matched filter is proposed. The detector consists of a nonlinear wavelet denoising filter to enhance the signal-to-noise ratio, followed by a replica correlator. Performance of the detector is investigated through an asymptotic theoretical analysis as well as Monte Carlo simulations. The proposed detector offers the following advantages over the optimal (in the Neyman-Pearson sense) detector: it is easier to implement, and it is more robust with respect to error in modeling the probability distribution of noise.
Resumo:
For a family of Space-Time Block Codes (STBCs) C-1, C-2,..., with increasing number of transmit antennas N-i, with rates R-i complex symbols per channel use, i = 1, 2,..., we introduce the notion of asymptotic normalized rate which we define as lim(i ->infinity) R-i/N-i, and we say that a family of STBCs is asymptotically-good if its asymptotic normalized rate is non-zero, i. e., when the rate scales as a non-zero fraction of the number of transmit antennas. An STBC C is said to be g-group decodable, g >= 2, if the information symbols encoded by it can be partitioned into g groups, such that each group of symbols can be ML decoded independently of the others. In this paper we construct full-diversity g-group decodable codes with rates greater than one complex symbol per channel use for all g >= 2. Specifically, we construct delay-optimal, g-group decodable codes for number of transmit antennas N-t that are a multiple of g2left perpendicular(g-1/2)right perpendicular with rate N-t/g2(g-1) + g(2)-g/2N(t). Using these new codes as building blocks, we then construct non-delay-optimal g-group decodable codes with rate roughly g times that of the delay-optimal codes, for number of antennas N-t that are a multiple of 2left perpendicular(g-1/2)right perpendicular, with delay gN(t) and rate Nt/2(g-1) + g-1/2N(t). For each g >= 2, the new delay-optimal and non-delay- optimal families of STBCs are both asymptotically-good, with the latter family having the largest asymptotic normalized rates among all known families of multigroup decodable codes with delay T <= gN(t). Also, for g >= 3, these are the first instances of g-group decodable codes with rates greater than 1 reported in the literature.
Resumo:
Homogenization and error analysis of an optimal interior control problem in the framework of Stokes' system, on a domain with rapidly oscillating boundary, are the subject matters of this article. We consider a three dimensional domain constituted of a parallelepiped with a large number of rectangular cylinders at the top of it. An interior control is applied in a proper subdomain of the parallelepiped, away from the oscillating volume. We consider two types of functionals, namely a functional involving the L-2-norm of the state variable and another one involving its H-1-norm. The asymptotic analysis of optimality systems for both cases, when the cross sectional area of the rectangular cylinders tends to zero, is done here. Our major contribution is to derive error estimates for the state, the co-state and the associated pressures, in appropriate functional spaces.
Resumo:
In this work, we consider two-dimensional (2-D) binary channels in which the 2-D error patterns are constrained so that errors cannot occur in adjacent horizontal or vertical positions. We consider probabilistic and combinatorial models for such channels. A probabilistic model is obtained from a 2-D random field defined by Roth, Siegel and Wolf (2001). Based on the conjectured ergodicity of this random field, we obtain an expression for the capacity of the 2-D non-adjacent-errors channel. We also derive an upper bound for the asymptotic coding rate in the combinatorial model.
Resumo:
We study the basin of attraction of static extremal black holes, in the concrete setting of the STU model. By finding a connection to a decoupled Toda-like system and solving it exactly, we find a simple way to characterize the attraction basin via competing behaviors of certain parameters. The boundaries of attraction arise in the various limits where these parameters degenerate to zero. We find that these boundaries are generalizations of the recently introduced (extremal) subtracted geometry: the warp factors still exhibit asymptotic integer power law behaviors, but the powers can be different from one. As we cross over one of these boundaries ('generalized subttractors'), the solutions turn unstable and start blowing up at finite radius and lose their asymptotic region. Our results are fully analytic, but we also solve a simpler theory where the attraction basin is lower dimensional and easy to visualize, and present a simple picture that illustrates many of the basic ideas.
Resumo:
We analytically evaluate the large deviation function in a simple model of classical particle transfer between two reservoirs. We illustrate how the asymptotic long-time regime is reached starting from a special propagating initial condition. We show that the steady-state fluctuation theorem holds provided that the distribution of the particle number decays faster than an exponential, implying analyticity of the generating function and a discrete spectrum for its evolution operator.
Resumo:
We generalize the results of arXiv : 1212.1875 and arXiv : 1212.6919 on attraction basins and their boundaries to the case of a specific class of rotating black holes,namely the ergo-free branch of extremal black holes in Kaluza-Klein theory. We find that exact solutions that span the attraction basin can be found even in the rotating case by appealing to certain symmetries of the equations of motion. They are characterized by two asymptotic parameters that generalize those of the non-rotating case, and the boundaries of the basin are spinning versions of the (generalized) subtractor geometry. We also give examples to illustrate that the shape of the attraction basin can drastically change depending on the theory.
Resumo:
Guidance laws based on a conventional sliding mode ensures only asymptotic convergence. However, convergence to the desired impact angle within a finite time is important in most practical guidance applications. These finite time convergent guidance laws suffer from singularity leading to control saturation. In this paper, guidance laws to intercept targets at a desired impact angle, from any initial heading angle, without exhibiting any singularity, are presented. The desired impact angle, which is defined in terms of a desired line-of-sight angle, is achieved in finite time by selecting the interceptor's lateral acceleration to enforce nonsingular terminal sliding mode on a switching surface designed using nonlinear engagement dynamics. Numerical simulation results are presented to validate the proposed guidance laws for different initial engagement geometries and impact angles. Although the guidance laws are designed for constant speed interceptors, its robustness against the time-varying speed of interceptors is also evaluated through extensive simulation results.
Resumo:
A discrete-time dynamics of a non-Markovian random walker is analyzed using a minimal model where memory of the past drives the present dynamics. In recent work N. Kumar et al., Phys. Rev. E 82, 021101 (2010)] we proposed a model that exhibits asymptotic superdiffusion, normal diffusion, and subdiffusion with the sweep of a single parameter. Here we propose an even simpler model, with minimal options for the walker: either move forward or stay at rest. We show that this model can also give rise to diffusive, subdiffusive, and superdiffusive dynamics at long times as a single parameter is varied. We show that in order to have subdiffusive dynamics, the memory of the rest states must be perfectly correlated with the present dynamics. We show explicitly that if this condition is not satisfied in a unidirectional walk, the dynamics is only either diffusive or superdiffusive (but not subdiffusive) at long times.