951 resultados para Aquatic pollutant
Resumo:
Black carbon (BC), the incomplete combustion product from biomass and fossil fuel burning, is ubiquitously found in soils, sediments, ice, water and atmosphere. Because of its polyaromatic molecular characteristic, BC is believed to contribute significantly to the global carbon budget as a slow-cycling, refractory carbon pool. However, the mass balance between global BC generation and accumulation does not match, suggesting a removal mechanism of BC to the active carbon pool, most probable in a dissolved form. The presence of BC in waters as part of the dissolved organic matter (DOM) pool was recently confirmed via ultrahigh resolution mass spectrometry, and dissolved black carbon (DBC), a degradation product of charcoal, was found in marine and coastal environments. However, information on the loadings of DBC in freshwater environments and its global riverine flux from terrestrial systems to the oceans remained unclear. The main objectives of this study were to quantify DBC in diverse aquatic ecosystems and to determine its environmental dynamics. Surface water samples were collected from aquatic environments with a spatially significant global distribution, and DBC concentrations were determined by a chemical oxidation method coupled with HPLC detection. While it was clear that biomass burning was the main sources of BC, the translocation mechanism of BC to the dissolved phase was not well understood. Data from the regional studies and the developed global model revealed a strong positive correlation between DBC and dissolved organic carbon (DOC) dynamics, indicating a co-generation and co-translocation between soil OC and BC. In addition, a DOC-assistant DBC translocation mechanism was identified. Taking advantage of the DOC-DBC correlation model, a global riverine DBC flux to oceans on the order of 26.5 Mt C yr-1 (1 Mt = 1012 g) was determined, accounting for 10.6% of the global DOC flux. The results not only indicated that DOC was an important environmental intermediate for BC transfer and storage, but also provided an estimate of a major missing link in the global BC budget. The ever increasing DBC export caused by global warming will change the marine DOM quality and may have important consequences for carbon cycling in marine ecosystem.
Resumo:
Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.
Resumo:
Aquatic ecosystems exhibit different vulnerabilities to anthropogenic disturbances. I examined this problem in the Upper Napo River Basin (UNRB), Ecuador. I ranked from 1 to 5 aquatic ecosystem uniqueness, health and threats. I stratified the basin into five Ecological Drainage Units (EDU), 48 Aquatic Ecological Systems (AES), and 203 macrohabitats. I found main threats (habitat conversion/degradation, land development, mining, oil industries, and water diversion) cover 54% of the UNRB, but have different scores and extents in each EDU. I assessed the health of 111 AESs, under three land use treatments, by analyzing the streamside zone, physical forms, water quality, aquatic life, and hydrology. Overall, health of AESs varied from 5 to 2.58, with 5 being the highest level of health. Threats and health of AESs were inversely related (F=34.119, P
Resumo:
Aquatic macrophytes can successfully colonise and re-colonise areas separated by space and time. The mechanisms underlying such “mobility” are not well understood, but it has often been hypothesised that epizoochory (external dispersal) plays an important role. Yet, there is only limited, and mostly anecdotal, evidence concerning successful epizoochorous dispersal of aquatic macrophytes, particularly in the case of short-distance dispersal. Here we examine in situ and ex situ dispersal of aquatic macrophytes, including three invasive alien species. A high frequency of Lemna minor Linnaeus dispersal was observed in situ, and this was linked to bird-mediated epizoochory. We concluded that wind had no effect on dispersal. Similarly, in an ex situ examination Lemna minuta Kunth and Azolla filiculoides Lamarck, were found to be dispersed with a high frequency by mallard ducks (Anas platyrhynchos). No dispersal was measured for Elodea nuttalli (Planchon) H. St. John. It is concluded that short-distance or “stepping-stone” dispersal via bird-mediated epizoochory can occur with high frequencies, and therefore can play an important role in facilitating colonisation, range expansion and biological invasion of macrophytes.
Resumo:
This PowerPoint presentation goes over the ways in which aquatics pest and weeds can be controlled.
Resumo:
Procambarus clarkii is currently recorded from 16 European territories. On top of being a vector of crayfish plague, which is responsible for large-scale disappearance of native crayfish species, it causes severe impacts on diverse aquatic ecosystems, due to its rapid life cycle, dispersal capacities, burrowing activities and high population densities. The species has even been recently discovered in caves. This invasive crayfish is a polytrophic keystone species that can exert multiple pressures on ecosystems. Most studies deal with the decline of macrophytes and predation on several species (amphibians, molluscs, and macroinvertebrates), highlighting how this biodiversity loss leads to unbalanced food chains. At a management level, the species is considered as (a) a devastating digger of the water drainage systems in southern and central Europe, (b) an agricultural pest in Mediterranean territories, consuming, for example, young rice plants, and (c) a threat to the restoration of water bodies in north-western Europe. Indeed, among the high-risk species, P. clarkii consistently attained the highest risk rating. Its negative impacts on ecosystem services were evaluated. These may include the loss of provisioning services such as reductions in valued edible native species of regulatory and supporting services, inducing wide changes in ecological communities and increased costs to agriculture and water management. Finally, cultural services may be lost. The species fulfils the criteria of the Article 4(3) of Regulation (EU) No 1143/2014 of the European Parliament (species widely spread in Europe and impossible to eradicate in a cost-effective manner) and has been included in the “Union List”. Particularly, awareness of the ornamental trade through the internet must be reinforced within the European Community and import and trade regulations should be imposed to reduce the availability of this high-risk species.
Resumo:
The ALqueva hydro-meteorological EXperiment (ALEX) field campaign took place monthly during summer 2014 and consisted in in situ measurements and sampling of water and biological elements, collected from three fixed platforms placed in the lacustrine zone. This integrated overview, including meteorological, environmental and biological results contributes to improve the knowledge of the reservoir dynamics and therefore to propose adequate management measures to preserve the observed biological integrity.
Resumo:
Recently, microbial pest control agents (MPCAs) have been worldwide used to reduce chemical pesticide use and to diminish the high risk of those compounds in the environment. Among various MPCAs, the nuclear polyhedrosis virus Baculovirus anticarsia is widely used in Brazil in the biological control of the velvet bean caterpillar. Although literature data do not show adverse effects of baculoviruses to nontarget organisms, it is necessary to evaluate their toxicity or patogenicity in order to study th environmental risk of those products and to register the formulations in the Brazilian Environmental Regularory Agency - IBAMA. In the presente work, the influence of a Baculovirus anticarsia formulation was evaluted to measure the consequences in the growth rateof the green algae Selenastrum capricornutum, the duckweed Lemna valdiviana and the microcrustacean Daphnia similis. The survival of the fish Hyphessobrycon scholzei exposed during 28 days was also evaluated. No significative adverse effects (P > 0.05) were observed in the test organisms which were exposed to 1-1000 times the maximum calculated pesticide concentration following a direct application to 15 cm layer of water.
Resumo:
Clomazone (2-(2-chlorophenyl)methyl-4.4-dimethyl-3-isoxazolidinone) is a post emergence herbicide widely used in rice fields in Rio Grande do Sul (Brazil) with high activity against Gramineae at the recommended application rate(AR).of 700g/ha. The herbicide input into the aquatic ecosystem may occur by aerial application or water drainage. The presence of this chemical in the water may affect non-target organisms leading to impairments in the aquatic food chain. Studies were conducted in this work to evaluate the risk of Clomazone using the estimated mean affective concentration (EC50) for the microalgae Selenastrum capricornutum(96h), the duckweed Lemna valdiviana(96h) and the crustacean Daphnia similis(48h). The EC50 values were 11.2; 31.7 and 13.8 mg/l, respectively. According to the obtained data, and considering a direct input of the herbicide in a 10cm column water, the estimated maximum application rate that doesn't cause acute effects is 5.3 AR for S. capricornutum, 6.5 AR for D. similis and 15.0 AR for L. valdiviana. The estimated maximum application rate that doesn't cause chronic effects is 2.0 AR for D. similis, 1.6 AR for S. capricornutum and 4.5 AR for L. valviana.
Resumo:
2016
Resumo:
Resumo: Predição da concentração de baixo risco de diflubenzuron para organismos aquáticos e avaliação da argila e brita na redução da toxicidade. O diflubenzuron é um inseticida que além de ser usado agricultura, tem sido amplamente empregado na piscicultura, apesar do seu uso ser proibido nesta atividade. Este composto não consta na lista da legislação brasileira que estabelece limites máximos permissíveis em corpos de água para a proteção das comunidades aquáticas. No presente trabalho, a partir da toxicidade do diflubenzuron em organismos não-alvo, foi calculada a concentração de risco para somente 5% das espécies (HC5). O valor deste parâmetro foi estimado em aproximadamente 7 x 10-6 mg L-1 . Este baixo valor é devido à extremamente alta toxicidade do diflubenzuron para dafnídeos e à grande variação de sensibilidade entre as espécies testadas. Dois matérias de relativamente baixo custo se mostraram eficientes na remoção da toxicidade do diflubenzuron de soluções contendo este composto. Dentre esses materiais, a argila expandida promoveu a redução em aproximadamente 50% da toxicidade de uma solução contendo diflubenzuron. Os resultados podem contribuir para políticas públicas no Brasil relacionadas ao estabelecimento de limites máximos permissíveis de xenobióticos no compartimento aquático. Também, para a pesquisa de matérias inertes e de baixo custo com potencial de remoção de xenobióticos presentes em efluentes da aquicultura ou da agricultura. Abstract: Diflubenzuron is an insecticide that, besides being used in the agriculture, has been widely used in fish farming. However, its use is prohibited in this activity. Diflubenzuron is not in the list of Brazilian legislation establishing maximum permissible limits in water bodies for the protection of aquatic communities. In this paper, according toxicity data of diflubenzuron in non-target organisms, it was calculated an hazardous concentration for only 5% of the species (HC5) of the aquatic community. This parameter value was estimated to be about 7 x 10 -6 mg L -1 . The low value is due to the extreme high toxicity of diflubenzuron to daphnids and to the large variation in sensitivity among the species tested. Two relatively low cost and inert materials were efficient in removing the diflubenzuron from solutions containing this compound. Among these materials, expanded clay shown to promote reduction of approximately 50% of the toxicity of a solution containing diflubenzuron. The results may contribute to the establishment of public policies in Brazil associated to the definition of maximum permissible limits of xenobiotics in the aquatic compartment. This study is also relevant to the search of low cost and inert materials for xenobiotics removal from aquaculture or agricultural effluents.
Resumo:
The application of Computational Fluid Dynamics based on the Reynolds-Averaged Navier-Stokes equations to the simulation of bluff body aerodynamics has been thoroughly investigated in the past. Although a satisfactory accuracy can be obtained for some urban physics problems their predictive capability is limited to the mean flow properties, while the ability to accurately predict turbulent fluctuations is recognized to be of fundamental importance when dealing with wind loading and pollution dispersion problems. The need to correctly take into account the flow dynamics when such problems are faced has led researchers to move towards scale-resolving turbulence models such as Large Eddy Simulations (LES). The development and assessment of LES as a tool for the analysis of these problems is nowadays an active research field and represents a demanding engineering challenge. This research work has two objectives. The first one is focused on wind loads assessment and aims to study the capabilities of LES in reproducing wind load effects in terms of internal forces on structural members. This differs from the majority of the existing research, where performance of LES is evaluated only in terms of surface pressures, and is done with a view of adopting LES as a complementary design tools alongside wind tunnel tests. The second objective is the study of LES capabilities in calculating pollutant dispersion in the built environment. The validation of LES in this field is considered to be of the utmost importance in order to conceive healthier and more sustainable cities. In order to validate the numerical setup adopted, a systematic comparison between numerical and experimental data is performed. The obtained results are intended to be used in the drafting of best practice guidelines for the application of LES in the urban physics field with a particular attention to wind load assessment and pollution dispersion problems.
Resumo:
Gait analysis allows to characterize motor function, highlighting deviations from normal motor behavior related to an underlying pathology. The widespread use of wearable inertial sensors has opened the way to the evaluation of ecological gait, and a variety of methodological approaches and algorithms have been proposed for the characterization of gait from inertial measures (e.g. for temporal parameters, motor stability and variability, specific pathological alterations). However, no comparative analysis of their performance (i.e. accuracy, repeatability) was available yet, in particular, analysing how this performance is affected by extrinsic (i.e. sensor location, computational approach, analysed variable, testing environmental constraints) and intrinsic (i.e. functional alterations resulting from pathology) factors. The aim of the present project was to comparatively analyze the influence of intrinsic and extrinsic factors on the performance of the numerous algorithms proposed in the literature for the quantification of specific characteristics (i.e. timing, variability/stability) and alterations (i.e. freezing) of gait. Considering extrinsic factors, the influence of sensor location, analyzed variable, and computational approach on the performance of a selection of gait segmentation algorithms from a literature review was analysed in different environmental conditions (e.g. solid ground, sand, in water). Moreover, the influence of altered environmental conditions (i.e. in water) was analyzed as referred to the minimum number of stride necessary to obtain reliable estimates of gait variability and stability metrics, integrating what already available in the literature for over ground gait in healthy subjects. Considering intrinsic factors, the influence of specific pathological conditions (i.e. Parkinson’s Disease) was analyzed as affecting the performance of segmentation algorithms, with and without freezing. Finally, the analysis of the performance of algorithms for the detection of gait freezing showed how results depend on the domain of implementation and IMU position.
Resumo:
The study analyses the calibration process of a newly developed high-performance plug-in hybrid electric passenger car powertrain. The complexity of modern powertrains and the more and more restrictive regulations regarding pollutant emissions are the primary challenges for the calibration of a vehicle’s powertrain. In addition, the managers of OEM need to know as earlier as possible if the vehicle under development will meet the target technical features (emission included). This leads to the necessity for advanced calibration methodologies, in order to keep the development of the powertrain robust, time and cost effective. The suggested solution is the virtual calibration, that allows the tuning of control functions of a powertrain before having it built. The aim of this study is to calibrate virtually the hybrid control unit functions in order to optimize the pollutant emissions and the fuel consumption. Starting from the model of the conventional vehicle, the powertrain is then hybridized and integrated with emissions and aftertreatments models. After its validation, the hybrid control unit strategies are optimized using the Model-in-the-Loop testing methodology. The calibration activities will proceed thanks to the implementation of a Hardware-in-the-Loop environment, that will allow to test and calibrate the Engine and Transmission control units effectively, besides in a time and cost saving manner.
Resumo:
The objective of the PhD thesis was to research technologies and strategies to reduce fuel consumption and pollutants emission produced by internal combustion engines. In order to meet this objective my activity was focused on the research of advanced controls based on cylinder pressure feedback. These types of control strategies were studied because they present promising results in terms of engine efficiency enhancement. In the PhD dissertation two study cases are presented. The first case is relative to a control strategy to be used at the test bench for the optimisation of the spark advance calibration of motorcycle Engine. The second case is relative to a control strategy to be used directly on board of mining engines with the objective or reducing the engine consumption and correct ageing effects. In both cases the strategies proved to be effective but their implementation required the use of specific toolchains for the measure of the cylinder pressure feedback that for a matter of cost makes feasible the strategy use only for applications: • At test bench • In small-markets like large off-road engines The major bottleneck that prevents the implementation of these strategies on mass production is the cost of cylinder pressure sensor. In order to tackle this issue, during the PhD research, the development of a low-cost sensor for the estimation of cylinder pressure was studied. The prototype was a piezo-electric washer designed to replace the standard spark-plug washer or high-pressure fuel injectors gasket. From the data analysis emerged the possibility to use the piezo-electric prototype signal to evaluate with accuracy several combustion metrics compatible for the implementation of advanced control strategies in on-board applications. Overall, the research shows that advanced combustion controls are feasible and beneficial, not only at the test bench or on stationary engines, but also in mass-produced engines.