973 resultados para Approximations
Resumo:
We calculated the frequency dependent macroscopic dielectric function and second-harmonic generation of cubic ZnS, ZnSe and ZnTe within time-dependent density-polarisation functional theory. The macroscopic dielectric function is calculated in a linear response framework, and second-harmonic generation in a real-time framework. The macroscopic exchange–correlation electric field that enters the time-dependent Kohn–Sham equations and accounts for long range correlation is approximated as a simple polarisation functional αP, where P is the macroscopic polarisation. Expressions for α are taken from the recent literature. The performance of the resulting approximations for the exchange–correlation electric field is analysed by comparing the theoretical spectra with experimental results and results obtained at the levels of the independent particle approximation and the random-phase approximation. For the dielectric function we also compare with state-of-the art calculations at the level of the Bethe–Salpeter equation.
Resumo:
In the presence of a (time-dependent) macroscopic electric field the electron dynamics of dielectrics cannot be described by the time-dependent density only. We present a real-time formalism that has the density and the macroscopic polarization P as key quantities. We show that a simple local function of P already captures long-range correlation in linear and nonlinear optical response functions. Specifically, after detailing the numerical implementation, we examine the optical absorption, the second- and third-harmonic generation of bulk Si, GaAs, AlAs and CdTe at different level of approximation. We highlight links with ultranonlocal exchange-correlation functional approximations proposed within linear response time-dependent density functional theory framework.
Resumo:
Este trabalho focou-se no estudo de técnicas de sub-espaço tendo em vista as aplicações seguintes: eliminação de ruído em séries temporais e extracção de características para problemas de classificação supervisionada. Foram estudadas as vertentes lineares e não-lineares das referidas técnicas tendo como ponto de partida os algoritmos SSA e KPCA. No trabalho apresentam-se propostas para optimizar os algoritmos, bem como uma descrição dos mesmos numa abordagem diferente daquela que é feita na literatura. Em qualquer das vertentes, linear ou não-linear, os métodos são apresentados utilizando uma formulação algébrica consistente. O modelo de subespaço é obtido calculando a decomposição em valores e vectores próprios das matrizes de kernel ou de correlação/covariância calculadas com um conjunto de dados multidimensional. A complexidade das técnicas não lineares de subespaço é discutida, nomeadamente, o problema da pre-imagem e a decomposição em valores e vectores próprios de matrizes de dimensão elevada. Diferentes algoritmos de préimagem são apresentados bem como propostas alternativas para a sua optimização. A decomposição em vectores próprios da matriz de kernel baseada em aproximações low-rank da matriz conduz a um algoritmo mais eficiente- o Greedy KPCA. Os algoritmos são aplicados a sinais artificiais de modo a estudar a influência dos vários parâmetros na sua performance. Para além disso, a exploração destas técnicas é extendida à eliminação de artefactos em séries temporais biomédicas univariáveis, nomeadamente, sinais EEG.
Resumo:
The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.
Resumo:
Muitos dos problemas de otimização em grafos reduzem-se à determinação de um subconjunto de vértices de cardinalidade máxima que induza um subgrafo k-regular. Uma vez que a determinação da ordem de um subgrafo induzido k-regular de maior ordem é, em geral, um problema NP-difícil, são deduzidos novos majorantes, a determinar em tempo polinomial, que em muitos casos constituam boas aproximações das respetivas soluções ótimas. Introduzem-se majorantes espetrais usando uma abordagem baseada em técnicas de programação convexa e estabelecem-se condições necessárias e suficientes para que sejam atingidos. Adicionalmente, introduzem-se majorantes baseados no espetro das matrizes de adjacência, laplaciana e laplaciana sem sinal. É ainda apresentado um algoritmo não polinomial para a determinação de umsubconjunto de vértices de umgrafo que induz umsubgrafo k-regular de ordem máxima para uma classe particular de grafos. Finalmente, faz-se um estudo computacional comparativo com vários majorantes e apresentam-se algumas conclusões.
Resumo:
Observation-based slicing is a recently-introduced, language-independent, slicing technique based on the dependencies observable from program behaviour. Due to the wellknown limits of dynamic analysis, we may only compute an under-approximation of the true observation-based slice. However, because the observation-based slice captures all possible dependence that can be observed, even such approximations can yield insight into the limitations of static slicing. For example, a static slice, S that is strictly smaller than the corresponding observation based slice is guaranteed to be unsafe. We present the results of three sets of experiments on 12 different programs, including benchmarks and larger programs, which investigate the relationship between static and observation-based slicing. We show that, in extreme cases, observation-based slices can find the true static minimal slice, where static techniques cannot. For more typical cases, our results illustrate the potential for observation-based slicing to highlight unsafe static slices. Finally, we report on the sensitivity of observation-based slicing to test quality.
Resumo:
A three-dimensional primitive equation model and its application to a tidal estuary is described. The model solves the primitive equations for incompressible fluids with Boussinesq and hydrostatic approximations. The discretization is based on the finite volume method and allows a general vertical coordinate. The computational code is implemented in such a way that different vertical coordinates can be used in different parts of the domain. The model was designed to be able to simulate the flow both in the open ocean and in coastal and estuarine zones and can be coupled in a simple way to ecological models. The model was implemented successfully in several estuarine and coastal areas. Results are show for the Sado estuary in Portugal to illustrate model accuracy and potential. Quantitative validation is based on field data (water levels and velocities) while qualitative verification is based on the analysis of secondary flows.
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
Resumo:
Discrete time control systems require sample- and-hold circuits to perform the conversion from digital to analog. Fractional-Order Holds (FROHs) are an interpolation between the classical zero and first order holds and can be tuned to produce better system performance. However, the model of the FROH is somewhat hermetic and the design of the system becomes unnecessarily complicated. This paper addresses the modelling of the FROHs using the concepts of Fractional Calculus (FC). For this purpose, two simple fractional-order approximations are proposed whose parameters are estimated by a genetic algorithm. The results are simple to interpret, demonstrating that FC is a useful tool for the analysis of these devices.
Resumo:
Preemptions account for a non-negligible overhead during system execution. There has been substantial amount of research on estimating the delay incurred due to the loss of working sets in the processor state (caches, registers, TLBs) and some on avoiding preemptions, or limiting the preemption cost. We present an algorithm to reduce preemptions by further delaying the start of execution of high priority tasks in fixed priority scheduling. Our approaches take advantage of the floating non-preemptive regions model and exploit the fact that, during the schedule, the relative task phasing will differ from the worst-case scenario in terms of admissible preemption deferral. Furthermore, approximations to reduce the complexity of the proposed approach are presented. Substantial set of experiments demonstrate that the approach and approximations improve over existing work, in particular for the case of high utilisation systems, where savings of up to 22% on the number of preemption are attained.
Resumo:
In this paper we consider a complex-order forced van der Pol oscillator. The complex derivative Dα1jβ, with α, β ∈ ℝ+, is a generalization of the concept of an integer derivative, where α = 1, β = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency ω and amplitude b of the external forcing, the damping μ, and parameters α and β. Moreover, we consider two cases: (i) b = 1, μ = {1.0, 5.0, 10.0}, and ω = {0.5, 2.46, 5.0, 20.0}; (ii) ω = 20.0, μ = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic ω0. We also observed that the fundamental frequency of the oscillations ω0 varies with α and μ. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values α and β of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and ω.
Resumo:
This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.
Resumo:
The theory of fractional calculus goes back to the beginning of the theory of differential calculus, but its application received attention only recently. In the area of automatic control some work was developed, but the proposed algorithms are still in a research stage. This paper discusses a novel method, with two degrees of freedom, for the design of fractional discrete-time derivatives. The performance of several approximations of fractional derivatives is investigated in the perspective of nonlinear system control.
Resumo:
In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR filters) to fractional-order integrators and differentiators of type sα, α∈R. Adoption of the Padé, Prony and Shanks techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional differintegration of some standard time domain functions.
Resumo:
Fractional dynamics is a growing topic in theoretical and experimental scientific research. A classical problem is the initialization required by fractional operators. While the problem is clear from the mathematical point of view, it constitutes a challenge in applied sciences. This paper addresses the problem of initialization and its effect upon dynamical system simulation when adopting numerical approximations. The results are compatible with system dynamics and clarify the formulation of adequate values for the initial conditions in numerical simulations.