959 resultados para Antisense Transcription


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The venom gland of viperid snakes has a central lumen where the venom produced by secretory cells is stored. When the venom is lost from the gland, the secretory cells are activated and new venom is produced. The production of new venom is triggered by the action of noradrenaline on both alpha(1)- and beta-adrenoceptors in the venom gland. In this study, we show that venom removal leads to the activation of transcription factors NF kappa B and AP-1 in the venom gland. In dispersed secretory cells, noradrenaline activated both NF kappa B and AP-1. Activation of NF kappa B and AP-1 depended on phospholipase C and protein kinase A. Activation of NF kappa B also depended on protein kinase C. Isoprenaline activated both NF kappa B and AP-1, and phenylephrine activated NF kappa B and later AP-1. We also show that the protein composition of the venom gland changes during the venom production cycle. Striking changes occurred 4 and 7 days after venom removal in female and male snakes, respectively. Reserpine blocks this change, and the administration of alpha(1)- and beta-adrenoceptor agonists to reserpine-treated snakes largely restores the protein composition of the venom gland. However, the protein composition of the venom from reserpinized snakes treated with alpha(1)- or beta-adrenoceptor agonists appears normal, judging from SDS-PAGE electrophoresis. A sexual dimorphism in activating transcription factors and activating venom gland was observed. Our data suggest that the release of noradrenaline after biting is necessary to activate the venom gland by regulating the activation of transcription factors and consequently regulating the synthesis of proteins in the venom gland for venom production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-10 (IL-10) is an endogenous factor that restrains hepatic insulin resistance in diet-induced steatosis Reducing IL-10 expression increases proinflammatory activity in the steatotic liver and worsens insulin resistance As the transcriptional coactivator proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) plays a central role in dysfunctional hepatocytic activity in diet-induced steatosis, we hypothesized that at least part of the action of PGC-1 alpha could be mediated by reducing the transcription of the IL-10 gene Here, we used immunoblotting, real-time polymerase chain reaction, immunocytochemistry, and chromatin immunoprecipitation assay to investigate the role of PGC-1 alpha in the control of IL-10 expression in hepatic cells First, we show that, in the intact steatotic liver, the expressions of IL-10 and PGC-1 alpha are increased Inhibiting PGC-1 alpha expression by antisense oligonucleotide increases IL-10 expression and reduces the steatotic phenotype. In cultured hepatocytes, the treatment with saturated and unsaturated fatty acids increased IL-10 expression. This was accompanied by increased association of PGC-1 alpha with c-Maf and p50-nuclear factor (NF) kappa B, 2 transcription factors known to modulate IL-10 expression In addition, after fatty acid treatment. PGC-1 alpha, c-Maf, and p50-NF kappa B migrate from the cytosol to the nuclei of hepatocytes and bind to the IL-10 promoter region Inhibiting NF kappa B activation with salicylate reduces IL-10 expression and the association of PGC-1 alpha with p50-NF kappa B Thus, PGC-1 alpha emerges as a potential transcriptional regulator of the inflammatory phenomenon taking place in the steatotic liver (C) 2010 Elsevier Inc All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of ultraviolet (UV-C) photoproducts on apoptosis induction was investigated in growth arrested (confluent) and proliferating human primary fibroblasts. Confluent fibroblasts were more resistant to UV-C-induced apoptosis than proliferating cells, and this was observed for normal human cells and for cells from patients with Cockayne and trichothiodystrophy syndromes, deficient in transcription coupled repair. This resistance was sustained for at least seven days and was not due to DNA repair efficiency, as the removal of CPDs in the genome was similar under both growth conditions. There was no correlation between reduced apoptosis and RNA synthesis recovery. Following UV-C treatment, proliferating and confluent fibroblasts showed a similar level of RNA synthesis inhibition and recovery from transcription blockage. These results support the hypothesis that the decrease of DNA replication, in growth arrested cells, protects cell from UV-C-induced apoptosis, even in the presence of DNA lesions. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most trichothiodystrophy (TTD) patients present mutations in the xeroderma pigmentosum D (XPD) gene, coding for a subunit of the transcription/repair factor IIH (TFHH) complex involved in nucleotide excision repair (NER) and transcription. After UV irradiation, most TTD/XPD patients are more severely affected in the NER of cyclobutane pyrimidine dimers (CPD) than of 6-4-photoproducts (6-4PP). The reasons for this differential DNA repair defect are unknown. Here we report the first study of NER in response to CPDs or 6-4PPs separately analyzed in primary fibroblasts. This was done by using heterologous photorepair; recombinant adenovirus vectors carrying photolyases enzymes that repair CPD or 64PP specifically by using the energy of light were introduced in different cell lines. The data presented here reveal that some mutations affect the recruitment of TFHH specifically to CPDs, but not to 6-4PPs. This deficiency is further confirmed by the inability of TTD/XPD cells to recruit, specifically for CPDs, NER factors that arrive in a TFIIH-dependent manner later in the NER pathway. For 6-4PPs, we show that TFHH complexes carrying an NH2-terminal XPD mutated protein are also deficient in recruitment of NER proteins downstream of TFUH. Treatment with the histone deacetylase inhibitor trichostatin A allows the recovery of TFHH recruitment to CPDs in the studied TTD cells and, for COOH-terminal XPD mutations, increases the repair synthesis and survival after UV, suggesting that this defect can be partially related with accessibility of DNA damage in closed chromatin regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein kinase C (PKC) plays a key role in embryonic stem cell (ESC) proliferation, self-renewal and differentiation However, the function of specific PKC Isoenzymes have yet to be determined Of the PKCs expressed in undifferentiated ESCs, beta IPKC was the only isoenzyme abundantly expressed in the nuclei To investigate the role of beta IPKC in these cells, we employed a phosphoproteomics strategy and used two classical (cPKC) peptide modulators and one beta IPKC-specific inhibitor peptide We identified 13 nuclear proteins that are direct or indirect beta IPKC substrates in undifferentiated ESCs These proteins are known to be involved in regulating transcription, splicing, and chromatin remodeling during proliferation and differentiation Inhibiting beta IPKC had no effect on DNA synthesis in undifferentiated ESCs However, upon differentiation many cells seized to express beta IPKC and beta IPKC was frequently found in the cytoplasm Taken together, our results suggest that beta IPKC takes part in the processes that maintain ESCs in their undifferentiated state

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clear cell subtype of renal cell carcinoma (RCC) is the most lethal and prevalent cancer of the urinary system. To investigate the molecular changes associated with malignant transformation in clear cell RCC, the gene expression profiles of matched samples of tumor and adjacent non-neoplastic tissue were obtained from six patients. A custom-built cDNA microarray platform was used, comprising 2292 probes that map to exons of genes and 822 probes for noncoding RNAs mapping to intronic regions. Intronic transcription was detected in all normal and neoplastic renal tissues. A subset of 55 transcripts was significantly down-regulated in clear cell RCC relative to the matched nontumor tissue as determined by a combination of two statistical tests and leave-one-out patient cross-validation. Among the down-regulated transcripts, 49 mapped to untranslated or coding exons and 6 were intronic relative to known exons of protein-coding genes. Lower levels of expression of SIN3B, TRIP3, SYNJ2BP and NDE1 (P<0.02), and of intronic transcripts derived from SND1 and ACTN4 loci (P<0.05), were confirmed in clear cell RCC by Real-time RT-PCR. A subset of 25 transcripts was deregulated in additional six nonclear cell RCC samples, pointing to common transcriptional alterations in RCC irrespective of the histological subtype or differentiation state of the tumor. Our results indicate a novel set of tumor suppressor gene candidates, including noncoding intronic RNAs, which may play a significant role in malignant transformations of normal renal cells. (C) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids TFAM plays an important role in mitochondrial transcription and replication TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected in mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated However, a function for TFAM in BER has not yet been investigated This study examines the role of TFAM in BER In vitro studies with purified recombinant TFAM indicate that it preferentially binds to DNA containing 8-oxoguanines, but not to abasic sites, uracils, or a gap in the sequence TFAM inhibited the in vitro incision activity of 8-oxoguanine DNA glycosylase (OGG1), uracil-DNA glycosylase (UDG), apurinic endonuclease 1 (APE1), and nucleotide incorporation by DNA polymerase gamma (pol gamma) On the other hand, a DNA binding-defective TFAM mutant, L58A, showed less inhibition of BER in vitro Characterization of TFAM knockdown (KD) cells revealed that these lysates had higher 8oxoG incision activity without changes in alpha OGG1 protein levels TFAM KD cells had mild resistance to menadione and increased damage accumulation in the mtDNA when compared to the control cells In addition, we found that the tumor suppressor p53, which has been shown to interact with and alter the DNA binding activity of TFAM, alleviates TFAM-Induced inhibition of BER proteins Together, the results suggest that TFAM modulates BER in mitochondria by virtue of its DNA binding activity and protein interactions Published by Elsevier B V

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XACb0070 is an uncharacterized protein coded by the two large plasmids isolated from Xanthomonas axonopodis pv. cirri, the agent of citrus canker and responsible for important economical losses in citrus world production. XACb0070 presents sequence homology only with other hypothetical proteins belonging to plant pathogens, none of which have their structure determined. The NMR-derived solution structure reveals this protein is a homodimer in which each monomer presents two domains with different structural and dynamic properties: a folded N-terminal domain with beta alpha alpha topology which mediates dimerization and a long disordered C-terminal tail. The folded domain shows high structural similarity to the ribbon-helix-helix transcriptional repressors, a family of DNA-binding proteins of conserved 3D fold but low sequence homology: indeed XACb0070 binds DNA. Primary sequence and fold comparison of XACb0070 with other proteins of the ribbon-helix-helix family together with examination of the genes in the vicinity of xacb0070 suggest the protein might be the component of a toxin-antitoxin system. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The opportunistic pathogen Pseudomonas aeruginosa PA14 possesses four fimbrial cup clusters, which may confer the ability to adapt to different environments. cupD lies in the pathogenicity island PAPI-1 next to genes coding for a putative phosphorelay system composed of the hybrid histidine kinase RcsC and the response regulator RcsB. The main focus of this work was the regulation of cupD at the mRNA level. It was found that the HN-S-like protein MvaT does not exert a strong influence on cupD transcript levels, as it does for cupA. cupD transcription is higher in cultures grown at 28 degrees C, which agrees with a cupD mutant presenting attenuated virulence only in a plant model, but not in a mouse model of infection. Whereas an rcsC in-frame deletion mutant presented higher levels of cupD mRNA, rcsB deletion had the opposite effect. Accordingly, overexpression of RcsB increased the levels of cupD transcription, and promoted biofilm formation and the appearance of fimbriae. A single transcription start site was determined for cupD and transcription from this site was induced by RcsB. A motif similar to the enterobacterial RcsB/RcsA-binding site was detected adjacent to the -35 region, suggesting that this could be the RcsB-binding site. Comparison of P. aeruginosa and Escherichia coli Rcs may provide insights into how similar systems can be used by different bacteria to control gene expression and to adapt to various environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 195-bp satellite DNA is the most abundant Trypanosoma cruzi repetitive sequence. Here we show by RNA blotting and RT-PCR that 195 SAT is intensely transcribed. We observed a positive correlation between the level of satellite RNA and the abundance of the satellite copies in the genome of T cruzi strains and that the satellite expression is not developmentally regulated. By analyzing CL Brener individual reads, we estimated that 195 SAT corresponds to approximately 5% of the CL Brener genome. 195 SAT elements were found in only 37 annotated contigs, indicating that a large number of satellite copies were not incorporated into the assembled data. The assembled satellite units are distributed in non-syntenic regions with Trypanosoma brucei and Leishmania major genomes, enriched with surface proteins, retroelements, RHS and hypothetical proteins. Satellite repeats were not observed in annotated subtelomeric regions. We report that 12 satellite sequences are truncated by the retroelement VIPER. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A terapia genética tem se revelado uma ferramenta potente na Medicina, na tentativa de revolucionar o tratamento de várias doenças hereditárias e adquiridas. A introdução de genes em células pretende a expressão estável e prolongada de proteínas com efeitos terapêuticos. O silenciamento de genes, através da terapia genética que faz uso de oligonucleótidos antisense, pequenos RNA de interferência (siRNA) ou ribozimas, visa o decréscimo ou anulação do funcionamento de um gene cuja expressão amplificada, por algum motivo, leva ao desenvolvimento de umapatologia. A internalização de material genético nas células, usualmente, carece de métodos e/ou sistemas de entrega (vectores). Estes podem pertencer a duas categorias, designadamente, métodos virais e métodos não-virais. O primeiro é considerado o mais eficiente, apresentando porém, sérias desvantagens como o risco de carcinogénese. A solução é a utilização de métodos não virais,que podem ser físicos ou químicos. O objectivo principal desta dissertação foi a utilização de dendrímeros para o silenciamento do gene da proteína fluorescente optimizada (EGFP) em células HeLa, previamente modificadas para expressarem esta proteína. Dendrímeros poli(amidoamina) geração 5 (PAMAM G5) modificados com 4 ou 8 moléculas de ácidos gordos de diferentes comprimentos foram complexados com oligonucleótidos antisense. A vantagem que estes apresentam em relação aos dendrímeros nativos é que são capazes de interagir com os lípidos da membrana celular, esperando-se, por isso, uma melhor eficiência de transfecção e efeitos antisense. Isto foi efectivamente verificado, sendo que o nível de silenciamento do gene da EGFP obtido, está directamente relacionado com o aumento da razão NP, o número e o comprimento das cadeias hidrofóbicas. O silencimento de genes tem sofrido grandes avanços, havendo actualmente uma série de ensaios clínicos para a sua utilização no tratamento de doenças como cancros de origem hereditária ou viral, prevendo-se que venha para ficar, juntamente com o silenciamento mediado por siRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flowering is a physiological process that it is vital for plants. This physiological process has been well studied in the plant model Arabidopsis, but in sugarcane this process is not well known. The transition of the shoot apical meristem from vegetative to flowering is a critical factor for plant development. At Brazil northeastern region, the transition to flowering in sugarcane has an important effect as it may reduce up to 60% its production. This is a consequence of the sugar translocation from stalks to the shoot apical meristem which is necessary during the flowering process. Therefore, the aim of this work was to explore and analyze cDNAs previously identified using subtractive cDNA libraries. The results showed that these cDNAs showed differential expression profile in varieties of sugarcane (early x late flowering). The in silico analysis suggested that these cDNAs had homology to calmodulin, NAC transcription factor and phosphatidylinositol, a SEC14, which were described in the literature as having a role in the process of floral development. To better understand the role of the cDNA homologous to calmodulin, tobacco plants were transformed with overexpression cassettes in sense and antissense orientation. Plants overexpressing the cassette in sense orientation did not flowered, while plants overexpressing the cassette in the antissense orientation produced flowers. The data obtained in this study suggested the possible role from CAM sequence, SEC14 and NAC in the induction/floral development pathway in sugarcane, this is the first study in order to analyze these genes in the sugarcane flowering process.