973 resultados para Amount concentration (molecules in cells), of phosphorylated Janus Activated Kinase 2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 µM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 µM and occasionally <1.0 µM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si/m**2 (range 162-793 mmol Si/m**2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si/m**2/d, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16-21 mmol Si/m**2/d, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100-150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system. Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of <=4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical structure of the strontium-90 concentration field and its relation to hydrology of waters are described on the basis of investigations in the Caribbean Sea during Cruises 6 and 7 of R/V Akademik Vernadsky (1972-1973). Vertical velocity and the coefficient of vertical turbulent diffusion are calculated for the eastern Caribbean Sea from strontium-90 concentration and salinity data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hair sampled from 96 East Greenland polar bears (Ursus maritimus) over the periods 1892-1927 and 1988-2009 was analyzed for cortisol as a proxy to investigate temporal patterns of environmental stress. Cortisol concentration was independent of sex and age, and was found at significantly higher (p<0.001) concentrations in historical hair samples (1892-1927; n = 8) relative to recent ones (1988-2009; n = 88). In addition, there was a linear time trend in cortisol concentration of the recent samples (p< 0.01), with an annual decrease of 2.7%. The recent hair samples were also analyzed for major bioaccumulative, persistent organic pollutants (POPs). There were no obvious POP related time trends or correlations between hair cortisol and hair POP concentrations. Thus, polar bear hair appears to be a relatively poor indicator of the animal's general POP load in adipose tissue. However, further investigations are warranted to explore the reasons for the temporal decrease found in the bears' hair cortisol levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims: Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce aboveground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses. Results: Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (-22%) and sporophyte production (-44%), together with increased b-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia lycopodioides responded less to +UV-B, showing increased b-carotene and sclerophylly and decreased UV-absorbing compounds. Polytrichum commune only showed small morphogenetic changes. No effect of UV-B on bryophyte cover was observed. Water availability had profound effects on bryophyte ecophysiology, and plants showed, in general, lower growth and ETR, together with a higher photoprotection in the drier site. Water availability also influenced bryophyte responses to +UV-B and, in particular, responses were less detectable in the drier site. Conclusions: Impacts of UV-B exposure on Arctic bryophytes were significant, in contrast to modest or absent UV-B effects measured in previous studies. The impacts were more easily detectable in species with high plasticity such as H. splendens and less obvious, or more subtle, under drier conditions. Species biology and water supply greatly influences the impact of UV-B on at least some Arctic bryophytes and could contribute to the wide variation of responses observed previously.