997 resultados para American Oriental Society.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation, as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3 and therefore, CV was corrected so that only non-instrument uncertainty was analysed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as one order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and non-parametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CVc, and therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A numerical study is presented to examine the fingering instability of a gravity-driven thin liquid film flowing down the outer wall of a vertical cylinder. The lubrication approximation is employed to derive an evolution equation for the height of the film, which is dependent on a single parameter, the dimensionless cylinder radius. This equation is identified as a special case of that which describes thin film flow down an inclined plane. Fully three-dimensional simulations of the film depict a fingering pattern at the advancing contact line. We find the number of fingers observed in our simulations to be in excellent agreement with experimental observations and a linear stability analysis reported recently by Smolka & SeGall (Phys Fluids 23, 092103 (2011)). As the radius of the cylinder decreases, the modes of perturbation have an increased growth rate, thus increasing cylinder curvature partially acts to encourage the contact line instability. In direct competition with this behaviour, a decrease in cylinder radius means that fewer fingers are able to form around the circumference of the cylinder. Indeed, for a sufficiently small radius, a transition is observed, at which point the contact line is stable to transverse perturbations of all wavenumbers. In this regime, free surface instabilities lead to the development of wave patterns in the axial direction, and the flow features become perfectly analogous to the two-dimensional flow of a thin film down an inverted plane as studied by Lin & Kondic (Phys Fluids 22, 052105 (2010)). Finally, we simulate the flow of a single drop down the outside of the cylinder. Our results show that for drops with low volume, the cylinder curvature has the effect of increasing drop speed and hence promoting the phenomenon of pearling. On the other hand, drops with much larger volume evolve to form single long rivulets with a similar shape to a finger formed in the aforementioned simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to investigate the influence of low-dose bovine colostrum protein concentrate (CPC) supplementation on selected immune variables in cyclists. Twenty-nine highly trained male road cyclists completed an initial 40-km time trial (TT(40)) and were then randomly assigned to either a supplement (n = 14, 10 g bovine CPC/day) or placebo group (n = 15, 10 g whey protein concentrate/day). After 5 wk of supplementation, the cyclists completed a second TT(40). They then completed 5 consecutive days of high-intensity training (HIT) that included a TT(40), followed by a final TT(40) in the following week. Venous blood and saliva samples were collected immediately before and after each TT(40), and upper respiratory illness symptoms were recorded over the experimental period. Compared with the placebo group, bovine CPC supplementation significantly increased preexercise serum soluble TNF receptor 1 during the HIT period (bovine CPC = 882 +/- 233 pg/ml, placebo = 468 +/- 139 pg/ml; P = 0.039). Supplementation also suppressed the postexercise decrease in cytotoxic/suppressor T cells during the HIT period (bovine CPC = -1.0 +/- 2.7%, placebo = -9.2 +/- 2.8%; P = 0.017) and during the following week (bovine CPC = 1.4 +/- 2.9%, placebo = -8.2 +/- 2.8%; P = 0.004). Bovine CPC supplementation prevented a postexercise decrease in serum IgG(2) concentration at the end of the HIT period (bovine CPC = 4.8 +/- 6.8%, P = 0.88; placebo = -9.7 +/- 6.9%, P = 0.013). There was a trend toward reduced incidence of upper respiratory illness symptoms in the bovine CPC group (P = 0.055). In summary, low-dose bovine CPC supplementation modulates immune parameters during normal training and after an acute period of intense exercise, which may have contributed to the trend toward reduced upper respiratory illness in the bovine CPC group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a new route to hydrogen isotope separation which exploits the quantum sieving effect in the context of transmission through asymmetrically decorated, doped porous graphenes. Selectivities of D2 over H2 as well as rate constants are calculated based on ab initio interaction potentials for passage through pure and nitrogen functionalized porous graphene. One-sided dressing of the membrane with metal provides the critical asymmetry needed for an energetically favorable pathway.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biological systems involving proliferation, migration and death are observed across all scales. For example, they govern cellular processes such as wound-healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behaviour. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pair-wise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplication, in the form of a partial differential equation description for the evolution of pair-wise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behaviour in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before, and our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials. CO2 molecules form weak interactions with uncharged BN nanomaterials and are weakly adsorbed. When extra electrons are introduced to these nanomaterials (i.e., when they are negatively charged), CO2 molecules become tightly bound and strongly adsorbed. Once the electrons are removed, CO2 molecules spontaneously desorb from BN absorbents. In addition, these negatively charged BN nanosorbents show high selectivity for separating CO2 from its mixtures with CH4 and/or H2. Our study demonstrates that BN nanomaterials are excellent absorbents for controllable, highly selective, and reversible capture and release of CO2. In addition, the charge density applied in this study is of the order of 1013 cm–2 of BN nanomaterials and can be easily realized experimentally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neutrophils serve as an intriguing model for the study of innate immune cellular activity induced by physiological stress. We measured changes in the transcriptome of circulating neutrophils following an experimental exercise trial (EXTRI) consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Blood samples were taken at baseline, 3 h, 48 h, and 96 h post-EXTRI from eight healthy, endurance-trained, male subjects. RNA was extracted from isolated neutrophils. Differential gene expression was evaluated using Illumina microarrays and validated with quantitative PCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Blood concentrations of muscle damage indexes, neutrophils, interleukin (IL)-6 and IL-10 were increased (P < 0.05) 3 h post-EXTRI. Upregulated groups of functionally related genes 3 h post-EXTRI included gene sets associated with the recognition of tissue damage, the IL-1 receptor, and Toll-like receptor (TLR) pathways (familywise error rate, P value < 0.05). The core enrichment for these pathways included TLRs, low-affinity immunoglobulin receptors, S100 calcium binding protein A12, and negative regulators of innate immunity, e.g., IL-1 receptor antagonist, and IL-1 receptor associated kinase-3. Plasma myoglobin changes correlated with neutrophil TLR4 gene expression (r = 0.74; P < 0.05). Neutrophils had returned to their nonactivated state 48 h post-EXTRI, indicating that their initial proinflammatory response was transient and rapidly counterregulated. This study provides novel insight into the signaling mechanisms underlying the neutrophil responses to endurance exercise, suggesting that their transcriptional activity was particularly induced by damage-associated molecule patterns, hypothetically originating from the leakage of muscle components into the circulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction of water with the fluorine-covered (001) surface of anatase titanium dioxide (TiO2) has been studied within the framework of density functional theory (DFT). Our results show that water dissociation is unfavorable due to repulsive interactions between surface fluorine and oxygen. We also found that the reaction of hydrofluoric acid with a surface hydroxyl group to form a surface Ti–F bond is exothermic, while the removal of fluorine from the surface needs additional energy of about half an eV. Therefore, water molecules are predicted to remain intact at the interface with the F-terminated anatase (001).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amonia borane (AB) has been identified as a potential candidate highcapacity hydrogen storage material. This work probes the adsorption and dissociation of AB inside and outside single-walled carbon nanotubes (SWCNTs) within the framework of density functional theory. The dissociation barriers of AB have been calculated and compared with that of the isolated AB molecule. On the basis of the present calculations, no notable improvement results from SWCNT confinement; on the contrary, the dissociation barrier slightly increases with respect to isolated AB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solution-phase photocatalytic reduction of graphene oxide to reduced graphene oxide (RGO) by titanium dioxide (TiO2) nanoparticles produces an RGO-TiO2 composite that possesses enhanced charge transport properties beyond those of pure TiO2 nanoparticle films. These composite films exhibit electron lifetimes up to four times longer than that of intrinsic TiO2 films due to RGO acting as a highly conducting intraparticle charge transport network within the film. The intrinsic UV-active charge generation (photocurrent) of pure TiO2 was enhanced by a factor of 10 by incorporating RGO; we attribute this to both the highly conductive nature of the RGO and to improved charge collection facilitated by the intimate contact between RGO and the TiO2, uniquely afforded by the solution-phase photocatalytic reduction method. Integrating RGO into nanoparticle films using this technique should improve the performance of photovoltaic devices that utilize nanoparticle films, such as dye-sensitized and quantum-dot-sensitized solar cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, ab initio density functional calculations were performed to explore the effect of surface lithium vacancies on the initial dehydrogenation kinetics of lithium borohydride. We found that some B−H bonds in neighboring BH4-1 complexes around the vacancy became elongated (weakened). The activation barriers for the recombination of H atoms to form H2 were decreased from 3.64 eV for the stoichiometrically complete LiBH4(010) surface to 1.53 and 0.23 eV in the presence of mono- and di-vacancies, respectively. Our results indicate that the creation of Li vacancies may play a critical role in accelerating the dehydrogenation kinetics of LiBH4.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ab initio density functional theory (DFT) calculations are performed to study the formation and diffusion of hydrogen vacancies on MgH2(110) surface and in bulk. We find that the formation energies for a single H-vacancy increase slightly from the surface to deep layers. The energies for creating adjacent surface divancacies at two inplane sites and at an inplane and a bridge site are even smaller than that for the formation of a single H-vacancy, a fact that is attributed to the strong vacancy−vacancy interactions. The diffusion of an H-vacancy from an in-plane site to a bridge site on the surface has the smallest activation barrier calculated at 0.15 eV and should be fast at room temperature. The activation barriers computed for H-vacancy diffusion from the surface into sublayers are all less than 0.70 eV, which is much smaller than the activation energy for desorption of hydrogen on the MgH2(110) surface (1.78−2.80 eV/H2). This suggests that surface desorption is more likely than vacancy diffusion to be rate determining, such that finding effective catalyst on the MgH2 surface to facilitate desorption will be very important for improving overall dehydrogenation performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NaAlH4 and LiBH4 are potential candidate materials for mobile hydrogen storage applications, yet they have the drawback of being highly stable and desorbing hydrogen only at elevated temperatures. In this letter, ab initio density functional theory calculations reveal how the stabilities of the AlH4 and BH4 complex anions will be affected by reducing net anionic charge. Tetrahedral AlH4 and BH4 complexes are found to be distorted with the decrease of negative charge. One H-H distance becomes smaller and the charge density will overlap between them at a small anion charge. The activation energies to release of H2 from AlH4 and BH4 complexes are thus greatly decreased. We demonstrate that point defects such as neutral Na vacancies or substitution of a Na atom with Ti on the NaAlH4(001) surface can potentially cause strong distortion of neighboring AlH4 complexes and even induce spontaneous dehydrogenation. Our results help to rationalize the conjecture that the suppression of charge transfer to AlH4 and BH4 anion as a consequence of surface defects should be very effective for improving the recycling performance of H2 in NaAlH4 and LiBH4. The understanding gained here will aid in the rational design and development of hydrogen storage materials based on these two systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.