937 resultados para Alchornea triplinervia extract
Resumo:
Mg-chelatase catalyzes the ATP-dependent insertion of Mg2+ into protoporphyrin-IX to form Mg-protoporphyrin-IX. This is the first step unique to chlorophyll synthesis, and it lies at the branch point for porphyrin utilization; the other branch leads to heme. Using the stromal fraction of pea (Pisum sativum L. cv Spring) chloroplasts, we have prepared Mg-chelatase in a highly active (1000 pmol 30 min−1 mg−1) and stable form. The reaction had a lag in the time course, which was overcome by preincubation with ATP. The concentration curves for ATP and Mg2+ were sigmoidal, with apparent Km values for Mg2+ and ATP of 14.3 and 0.35 mm, respectively. The Km for deuteroporphyrin was 8 nm. This Km is 300 times lower than the published porphyrin Km for ferrochelatase. The soluble extract was separated into three fractions by chromatography on blue agarose, followed by size-selective centrifugal ultrafiltration of the column flow-through. All three fractions were required for activity, clearly demonstrating that the plant Mg-chelatase requires at least three protein components. Additionally, only two of the components were required for activation; both were contained in the flow-through from the blue-agarose column.
Resumo:
The dose effect of pure daidzin on the suppression of ethanol intake in Syrian golden hamsters was compared with that of crude daidzin contained in a methanol extract of Radix puerariae (RP). EC50 values estimated from the graded dose-response curves for pure daidzin and RP extract daidzin are 23 and 2.3 mg per hamster per day, respectively. Apparently the antidipsotropic activity of the RP extract cannot be accounted for solely by its daidzin content (22 mg/g). In addition to daidzin, six other isoflavones were identified in the RP extract and quantified--namely, puerarin (160 mg per g of extract), genistin (3.7 mg/g), daidzein (2.6 mg/g), daidzein-4',7-diglucoside (1.2 mg/g), genistein (0.2 mg/g), and formononetin (0.16 mg/g). None of these, administered either alone or combined, contributes in any significant way to the antidipsotropic activity of the extract. Plasma daidzin concentration-time curves determined in hamsters administered various doses of pure daidzin or RP extract by i.p.injection indicate that the crude extract daidzin has approximately 10 times greater bioavailability than the pure compound. Reconstruction of the dose-response effects for pure and crude daidzin using bioavailable daidzin rather than administered dose gives a single curve. Synthetic daidzin added to the RP extract acquires the bioavailability of the endogenous daidzin that exists naturally in the extract. These results show that (i) daidzin is the major active principle in methanol extracts of RP, and (ii) additional constituents in the methanol extract of RP assist uptake of daidzin in golden hamsters.
Resumo:
We have constructed simian virus 40 minireplicons containing uniquely placed cis,syn-thymine dimers (T <> T) for the analysis of leading- and lagging-strand bypass replication. Assaying for replication in a human cell-free extract through the analysis of full-size labeled product molecules and restriction fragments spanning the T <> T site resulted in the following findings: (i) The primary site of synthesis blockage with T <> T in either the leading or lagging strand was one nucleotide before the lesion. (ii) Replicative bypass of T <> T was detected in both leading and lagging strands. The efficiency of synthesis past T <> T was 22% for leading-strand T <> T and 13% for lagging-strand T <> T. (iii) The lagging-strand T <> T resulted in blocked retrograde synthesis with the replication fork proceeding past the lesion, resulting in daughter molecules containing small gaps (form II' DNA). (iv) With T <> T in the leading-strand template, both the leading and lagging strands were blocked, representing a stalled replication fork. Uncoupling of the concerted synthesis of the two strands of the replication fork was observed, resulting in preferential elongation of the undamaged lagging strand. These data support a model of selective reinitiation downstream from the lesion on lagging strands due to Okazaki synthesis, with no reinitiation close to the damage site on leading strands [Meneghini, R. & Hanawalt, P.C. (1976) Biochim. Biophys. Acta 425, 428-437].
Resumo:
Acid extracts and a resultant fraction from solid-phase extraction (SPE) of Romalea guttata crop and midgut tissues induce sorghum (Sorghum bicolor var. Rio) coleoptile growth in 24-h incubations an average of 49% above untreated controls. When combined with plant auxin, indole-3-acetic acid (IAA), the SPE fraction shows a synergistic reaction, yielding increases in coleoptile growth that average 295% above untreated controls and 8% above IAA standards. The interaction lowered the point of maximum sensitivity of IAA 3 orders of magnitude, resulting in a new IAA physiological set point at 10(-7) g/ml. This synergism suggests that contents in animal regurgitants making their way into plant tissue during feeding may produce a positive feedback in plant growth and development following herbivory. Such a process, also known as reward feedback, may exert major controls on ecosystem-level relationships in nature.
Resumo:
One fragment of a leaf containing a handwritten extract from unidentified legislation stipulating that a section of the bill "should not be so construed as to exempt" the real estate of the College or its officers from payment of local taxes beyond that exempted in the Charter of 1650 and the state Constitution. The text includes the note, "passed 7 Feb'y --99" and presumably refers to the bill referenced in President Willard's letter to Samuel Phillips that "passed the House, and is now before the Senate." The section did not become part of the tax law.
Resumo:
Two octavo-sized leaves containing a one-page handwritten copy of the section of the Charter of 1650 providing tax exemptions to Harvard College officers. The transcription is signed as a "True copy" by President Willard.
Resumo:
Record of parcel of lands in Norwich, CT deeded to a group of individuals including many members of the same families around 1770.