979 resultados para Air Pollution Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The federal regulatory regime for addressing airborne toxic pollutants functions fairly well in most of the country. However, it has proved deficient in addressing local risk issues, especially in urban areas with densely concentrated sources. The problem is especially pronounced in Houston, which is home to one of the world's biggest petrochemical complexes and a major port, both located near a large metropolitan center. Despite the fact that local government's role in regulating air toxics is typically quite limited, from 2004-2009, the City of Houston implemented a novel municipality-based air toxics reduction strategy. The initiatives ranged from voluntary agreements to litigation and legislation. This case study considers why the city chose the policy tools it did, how the tools performed relative to the designers' intentions, and how the debate among actors with conflicting values and goals shaped the policy landscape. The city's unconventional approach to controlling hazardous air pollution has not yet been examined rigorously. The case study was developed through reviews of publicly available documents and quasi-public documents obtained through public record requests, as well as interviews with key informants. The informants represented a range of experience and perspectives. They included current and former public officials at the city (including Mayor White), former Texas Commission on Environmental Quality staff, faculty at local universities, industry representatives, and environmental public health advocates. Some of the city's tools were successful in meeting their designers' intent, some were less successful. Ultimately, even those tools that did not achieve their stated purpose were nonetheless successful in bringing attention and resources to the air quality issue. Through a series of pleas and prods, the city managed to draw attention to the problem locally and get reluctant policymakers at higher levels of government to respond. This work demonstrates the potential for local government to overcome limitations in the federal regulatory regime for air toxics control, shifting the balance of local, state, and federal initiative. It also highlights the importance of flexible, cooperative strategies in local environmental protection.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to air pollutants in urban locales has been associated with increased risk for chronic diseases including cardiovascular disease (CVD) and pulmonary diseases in epidemiological studies. The exact mechanism explaining how air pollution affects chronic disease is still unknown. However, oxidative stress and inflammatory pathways have been posited as likely mechanisms. ^ Data from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Mexican-American Cohort Study (2003-2009) were used to examine the following aims, respectively: 1) to evaluate the association between long-term exposure to ambient particulate matter (PM) (PM10 and PM2.5) and nitrogen oxides (NO x) and telomere length (TL) among approximately 1,000 participants within MESA; and 2) to evaluate the association between traffic-related air pollution with self-reported asthma, diabetes, and hypertension among Mexican-Americans in Houston, Texas. ^ Our results from MESA were inconsistent regarding associations between long-term exposure to air pollution and shorter telomere length based on whether the participants came from New York (NY) or Los Angeles (LA). Although not statistically significant, we observed a negative association between long-term air pollution exposure and mean telomere length for NY participants, which was consistent with our hypothesis. Positive (statistically insignificant) associations were observed for LA participants. It is possible that our findings were more influenced by both outcome and exposure misclassification than by the absence of a relationship between pollution and TL. Future studies are needed that include longitudinal measures of telomere length as well as focus on effects of specific constituents of PM and other pollutant exposures on changes in telomere length over time. ^ This research provides support that Mexican-American adults who live near a major roadway or in close proximity to a dense street network have a higher prevalence of asthma. There was a non-significant trend towards an increased prevalence of adult asthma with increasing residential traffic exposure especially for residents who lived three or more years at their baseline address. Even though the prevalence of asthma is low in the Mexican-origin population, it is the fastest growing minority group in the U.S. and we would expect a growing number of Mexican-Americans who suffer from asthma in the future. Future studies are needed to better characterize risks for asthma associated with air pollution in this population.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is scant evidence regarding the associations between ambient levels of combustion pollutants and small for gestational age (SGA) infants. No studies of this type have been completed in the Southern United States. The main objective of the project presented was to determine associations between combustion pollutants and SGA infants in Texas using three different exposure assessments. ^ Birth certificate data that contained information on maternal and infant characteristics were obtained from the Texas Department of State Health Services (TX DSHS). Exposure assessment data for the three aims came from: (1) U.S. Environmental Protection Agency (EPA) National Air Toxics Assessment (NATA), (2) U.S. EPA Air Quality System (AQS), and (3) TX Department of Transportation (DOT), respectively. Multiple logistic regression models were used to determine the associations between combustion pollutants and SGA. ^ For the first study looked at annual estimates of four air toxics at the census tract level in the Greater Houston Area. After controlling for maternal race, maternal education, tobacco use, maternal age, number of prenatal visits, marital status, maternal weight gain, and median census tract income level, adjusted ORs and 95% confidence intervals (CI) for exposure to PAHs (per 10 ng/m3), naphthalene (per 10 ng/m3), benzene (per 1 µg/m3), and diesel engine emissions (per 10 µg/m3) were 1.01 (0.97–1.05), 1.00 (0.99–1.01), 1.01 (0.97–1.05), and 1.08 (0.95–1.23) respectively. For the second study looking at Hispanics in El Paso County, AORs and 95% confidence intervals (CI) for increases of 5 ng/m3 for the sum of carcinogenic PAHs (Σ c-PAHs), 1 ng/m3 of benzo[a]pyrene, and 100 ng/m3 in naphthalene during the third trimester of pregnancy were 1.02 (0.97–1.07), 1.03 (0.96–1.11), and 1.01 (0.97–1.06), respectively. For the third study using maternal proximity to major roadways as the exposure metric, there was a negative association with increasing distance from a maternal residence to the nearest major roadway (Odds Ratio (OR) = 0.96; 95% CI = 0.94–0.97) per 1000 m); however, once adjusted for covariates this effect was no longer significant (AOR = 0.98; 95% CI = 0.96–1.00). There was no association with distance weighted traffic density (DWTD). ^ This project is the first to look at SGA and combustion pollutants in the Southern United States with three different exposure metrics. Although there was no evidence of associations found between SGA and the air pollutants mentioned in these studies, the results contribute to the body of literature assessing maternal exposure to ambient air pollution and adverse birth outcomes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bats are animals that posses high maneuvering capabilities. Their wings contain dozens of articulations that allow the animal to perform aggressive maneuvers by means of controlling the wing shape during flight (morphing-wings). There is no other flying creature in nature with this level of wing dexterity and there is biological evidence that the inertial forces produced by the wings have a key role in the attitude movements of the animal. This can inspire the design of highly articulated morphing-wing micro air vehicles (not necessarily bat-like) with a significant wing-to-body mass ratio. This thesis presents the development of a novel bat-like micro air vehicle (BaTboT) inspired by the morphing-wing mechanism of bats. BaTboT’s morphology is alike in proportion compared to its biological counterpart Cynopterus brachyotis, which provides the biological foundations for developing accurate mathematical models and methods that allow for mimicking bat flight. In nature bats can achieve an amazing level of maneuverability by combining flapping and morphing wingstrokes. Attempting to reproduce the biological wing actuation system that provides that kind of motion using an artificial counterpart requires the analysis of alternative actuation technologies more likely muscle fiber arrays instead of standard servomotor actuators. Thus, NiTinol Shape Memory Alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. This antagonistic configuration of SMA-muscles response to an electrical heating power signal to operate. This heating power is regulated by a proper controller that allows for accurate and fast SMA actuation. Morphing-wings will enable to change wings geometry with the unique purpose of enhancing aerodynamics performance. During the downstroke phase of the wingbeat motion both wings are fully extended aimed at increasing the area surface to properly generate lift forces. Contrary during the upstroke phase of the wingbeat motion both wings are retracted to minimize the area and thus reducing drag forces. Morphing-wings do not only improve on aerodynamics but also on the inertial forces that are key to maneuver. Thus, a modeling framework is introduced for analyzing how BaTboT should maneuver by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Motivated by the biological fact about the influence of wing inertia on the production of body accelerations, an attitude controller is proposed. The attitude control law incorporates wing inertia information to produce desired roll (φ) and pitch (θ) acceleration commands. This novel flight control approach is aimed at incrementing net body forces (Fnet) that generate propulsion. Mimicking the way how bats take advantage of inertial and aerodynamical forces produced by the wings in order to both increase lift and maneuver is a promising way to design more efficient flapping/morphing wings MAVs. The novel wing modulation strategy and attitude control methodology proposed in this thesis provide a totally new way of controlling flying robots, that eliminates the need of appendices such as flaps and rudders, and would allow performing more efficient maneuvers, especially useful in confined spaces. As a whole, the BaTboT project consists of five major stages of development: - Study and analysis of biological bat flight data reported in specialized literature aimed at defining design and control criteria. - Formulation of mathematical models for: i) wing kinematics, ii) dynamics, iii) aerodynamics, and iv) SMA muscle-like actuation. It is aimed at modeling the effects of modulating wing inertia into the production of net body forces for maneuvering. - Bio-inspired design and fabrication of: i) skeletal structure of wings and body, ii) SMA muscle-like mechanisms, iii) the wing-membrane, and iv) electronics onboard. It is aimed at developing the bat-like platform (BaTboT) that allows for testing the methods proposed. - The flight controller: i) control of SMA-muscles (morphing-wing modulation) and ii) flight control (attitude regulation). It is aimed at formulating the proper control methods that allow for the proper modulation of BaTboT’s wings. - Experiments: it is aimed at quantifying the effects of properly wing modulation into aerodynamics and inertial production for maneuvering. It is also aimed at demonstrating and validating the hypothesis of improving flight efficiency thanks to the novel control methods presented in this thesis. This thesis introduces the challenges and methods to address these stages. Windtunnel experiments will be oriented to discuss and demonstrate how the wings can considerably affect the dynamics/aerodynamics of flight and how to take advantage of wing inertia modulation that the morphing-wings enable to properly change wings’ geometry during flapping. Resumen: Los murciélagos son mamíferos con una alta capacidad de maniobra. Sus alas están conformadas por docenas de articulaciones que permiten al animal maniobrar gracias al cambio geométrico de las alas durante el vuelo. Esta característica es conocida como (alas mórficas). En la naturaleza, no existe ningún especimen volador con semejante grado de dexteridad de vuelo, y se ha demostrado, que las fuerzas inerciales producidas por el batir de las alas juega un papel fundamental en los movimientos que orientan al animal en vuelo. Estas características pueden inspirar el diseño de un micro vehículo aéreo compuesto por alas mórficas con redundantes grados de libertad, y cuya proporción entre la masa de sus alas y el cuerpo del robot sea significativa. Esta tesis doctoral presenta el desarrollo de un novedoso robot aéreo inspirado en el mecanismo de ala mórfica de los murciélagos. El robot, llamado BaTboT, ha sido diseñado con parámetros morfológicos muy similares a los descritos por su símil biológico Cynopterus brachyotis. El estudio biológico de este especimen ha permitido la definición de criterios de diseño y modelos matemáticos que representan el comportamiento del robot, con el objetivo de imitar lo mejor posible la biomecánica de vuelo de los murciélagos. La biomecánica de vuelo está definida por dos tipos de movimiento de las alas: aleteo y cambio de forma. Intentar imitar como los murciélagos cambian la forma de sus alas con un prototipo artificial, requiere el análisis de métodos alternativos de actuación que se asemejen a la biomecánica de los músculos que actúan las alas, y evitar el uso de sistemas convencionales de actuación como servomotores ó motores DC. En este sentido, las aleaciones con memoria de forma, ó por sus siglas en inglés (SMA), las cuales son fibras de NiTinol que se contraen y expanden ante estímulos térmicos, han sido usados en este proyecto como músculos artificiales que actúan como bíceps y tríceps de las alas, proporcionando la funcionalidad de ala mórfica previamente descrita. De esta manera, los músculos de SMA son mecánicamente posicionados en una configuración antagonista que permite la rotación de las articulaciones del robot. Los actuadores son accionados mediante una señal de potencia la cual es regulada por un sistema de control encargado que los músculos de SMA respondan con la precisión y velocidad deseada. Este sistema de control mórfico de las alas permitirá al robot cambiar la forma de las mismas con el único propósito de mejorar el desempeño aerodinámico. Durante la fase de bajada del aleteo, las alas deben estar extendidas para incrementar la producción de fuerzas de sustentación. Al contrario, durante el ciclo de subida del aleteo, las alas deben contraerse para minimizar el área y reducir las fuerzas de fricción aerodinámica. El control de alas mórficas no solo mejora el desempeño aerodinámico, también impacta la generación de fuerzas inerciales las cuales son esenciales para maniobrar durante el vuelo. Con el objetivo de analizar como el cambio de geometría de las alas influye en la definición de maniobras y su efecto en la producción de fuerzas netas, simulaciones y experimentos han sido llevados a cabo para medir cómo distintos patrones de modulación de las alas influyen en la producción de aceleraciones lineales y angulares. Gracias a estas mediciones, se propone un control de vuelo, ó control de actitud, el cual incorpora información inercial de las alas para la definición de referencias de aceleración angular. El objetivo de esta novedosa estrategia de control radica en el incremento de fuerzas netas para la adecuada generación de movimiento (Fnet). Imitar como los murciélagos ajustan sus alas con el propósito de incrementar las fuerzas de sustentación y mejorar la maniobra en vuelo es definitivamente un tópico de mucho interés para el diseño de robots aéros mas eficientes. La propuesta de control de vuelo definida en este trabajo de investigación podría dar paso a una nueva forma de control de vuelo de robots aéreos que no necesitan del uso de partes mecánicas tales como alerones, etc. Este control también permitiría el desarrollo de vehículos con mayor capacidad de maniobra. El desarrollo de esta investigación se centra en cinco etapas: - Estudiar y analizar el vuelo de los murciélagos con el propósito de definir criterios de diseño y control. - Formular modelos matemáticos que describan la: i) cinemática de las alas, ii) dinámica, iii) aerodinámica, y iv) actuación usando SMA. Estos modelos permiten estimar la influencia de modular las alas en la producción de fuerzas netas. - Diseño y fabricación de BaTboT: i) estructura de las alas y el cuerpo, ii) mecanismo de actuación mórfico basado en SMA, iii) membrana de las alas, y iv) electrónica abordo. - Contro de vuelo compuesto por: i) control de la SMA (modulación de las alas) y ii) regulación de maniobra (actitud). - Experimentos: están enfocados en poder cuantificar cuales son los efectos que ejercen distintos perfiles de modulación del ala en el comportamiento aerodinámico e inercial. El objetivo es demostrar y validar la hipótesis planteada al inicio de esta investigación: mejorar eficiencia de vuelo gracias al novedoso control de orientación (actitud) propuesto en este trabajo. A lo largo del desarrollo de cada una de las cinco etapas, se irán presentando los retos, problemáticas y soluciones a abordar. Los experimentos son realizados utilizando un túnel de viento con la instrumentación necesaria para llevar a cabo las mediciones de desempeño respectivas. En los resultados se discutirá y demostrará que la inercia producida por las alas juega un papel considerable en el comportamiento dinámico y aerodinámico del sistema y como poder tomar ventaja de dicha característica para regular patrones de modulación de las alas que conduzcan a mejorar la eficiencia del robot en futuros vuelos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salamanca, situated in center of Mexico is among the cities which suffer most from the air pollution in Mexico. The vehicular park and the industry, as well as orography and climatic characteristics have propitiated the increment in pollutant concentration of Sulphur Dioxide (SO2). In this work, a Multilayer Perceptron Neural Network has been used to make the prediction of an hour ahead of pollutant concentration. A database used to train the Neural Network corresponds to historical time series of meteorological variables and air pollutant concentrations of SO2. Before the prediction, Fuzzy c-Means and K-means clustering algorithms have been implemented in order to find relationship among pollutant and meteorological variables. Our experiments with the proposed system show the importance of this set of meteorological variables on the prediction of SO2 pollutant concentrations and the neural network efficiency. The performance estimation is determined using the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The results showed that the information obtained in the clustering step allows a prediction of an hour ahead, with data from past 2 hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Transport is the foundation of any economy: it boosts economic growth, creates wealth, enhances trade, geographical accessibility and the mobility of people. Transport is also a key ingredient for a high quality of life, making places accessible and bringing people together. The future prosperity of our world will depend on the ability of all of its regions to remain fully and competitively integrated in the world economy. Efficient transport is vital in making this happen. Operations research can help in efficiently planning the design and operating transport systems. Planning and operational processes are fields that are rich in combinatorial optimization problems. These problems can be analyzed and solved through the application of mathematical models and optimization techniques, which may lead to an improvement in the performance of the transport system, as well as to a reduction in the time required for solving these problems. The latter aspect is important, because it increases the flexibility of the system: the system can adapt in a faster way to changes in the environment (i.e.: weather conditions, crew illness, failures, etc.). These disturbing changes (called disruptions) often enforce the schedule to be adapted. The direct consequences are delays and cancellations, implying many schedule adjustments and huge costs. Consequently, robust schedules and recovery plans must be developed in order to fight against disruptions. This dissertation makes contributions to two different fields: rail and air applications. Robust planning and recovery methods are presented. In the field of railway transport we develop several mathematical models which answer to RENFE’s (the major railway operator in Spain) needs: 1. We study the rolling stock assignment problem: here, we introduce some robust aspects in order to ameliorate some operations which are likely to fail. Once the rolling stock assignment is known, we propose a robust routing model which aims at identifying the train units’ sequences while minimizing the expected delays and human resources needed to perform the sequences. 2. It is widely accepted that the sequential solving approach produces solutions that are not global optima. Therefore, we develop an integrated and robust model to determine the train schedule and rolling stock assignment. We also propose an integrated model to study the rolling stock circulations. Circulations are determined by the rolling stock assignment and routing of the train units. 3. Although our aim is to develop robust plans, disruptions will be likely to occur and recovery methods will be needed. Therefore, we propose a recovery method which aims to recover the train schedule and rolling stock assignment in an integrated fashion all while considering the passenger demand. In the field of air transport we develop several mathematical models which answer to IBERIA’s (the major airline in Spain) needs: 1. We look at the airline-scheduling problem and develop an integrated approach that optimizes schedule design, fleet assignment and passenger use so as to reduce costs and create fewer incompatibilities between decisions. Robust itineraries are created to ameliorate misconnected passengers. 2. Air transport operators are continuously facing competition from other air operators and different modes of transport (e.g., High Speed Rail). Consequently, airline profitability is critically influenced by the airline’s ability to estimate passenger demands and construct profitable flight schedules. We consider multi-modal competition including airline and rail, and develop a new approach that estimates the demand associated with a given schedule; and generates airline schedules and fleet assignments using an integrated schedule design and fleet assignment optimization model that captures the impacts of schedule decisions on passenger demand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two mathematical models are used to simulate pollution in the Bay of Santander. The first is the hydrodynamic model that provides the velocity field and height of the water. The second gives the pollutant concentration field as a resultant. Both models are formulated in two-dimensional equations. Linear triangular finite elements are used in the Galerkin procedure for spatial discretization. A finite difference scheme is used for the time integration. At each time step the calculated results of the first model are input to the second model as field data. The efficiency and accuracy of the models are tested by their application to a simple illustrative example. Finally a case study in simulation of pollution evolution in the Bay of Santander is presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, only few initiatives have been carried out in Spain in order to use mathematical models (e.g. DNDC, DayCent, FASSET y SIMSNIC) to estimate nitrogen (N) and carbon (C) dynamics as well as greenhouse gases (GHG) in Spanish agrosystems. Modeling at this level may allow to gain insight on both the complex relationships between biological and physicochemical processes, controlling the processes leading to GHG production and consumption in soils (e.g. nitrification, denitrification, decomposing, etc.), and the interactions between C and N cycles within the different components of the continuum plant-soil-environment. Additionally, these models can simulate the processes behind production, consumition and transport of GHG (e.g. nitrous oxide, N2O, and carbon dioxide, CO2) in the short and medium term and at different scales. Other sources of potential pollution from soils can be identified and quantified using these process-based models (e.g. NO3 y NH3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main concerns when conducting a dam test is the acute determination of the hydrograph for a specific flood event. The use of 2D direct rainfall hydraulic mathematical models on a finite elements mesh, combined with the efficiency of vector calculus that provides CUDA (Compute Unified Device Architecture) technology, enables nowadays the simulation of complex hydrological models without the need for terrain subbasin and transit splitting (as in HEC-HMS). Both the Spanish PNOA (National Plan of Aereal Orthophotography) Digital Terrain Model GRID with a 5 x 5 m accuracy and the CORINE GIS Land Cover (Coordination of INformation of the Environment) that allows assessment of the ground roughness, provide enough data to easily build these kind of models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo definitivo de esta investigación es contribuir con la profundización del conocimiento en las tecnologías de remediación, específicamente las térmicas, debido a que la contaminación de suelos es motivo de preocupación por ser uno de los graves impactos ambientales que origina el hombre con sus actividades, especialmente las industriales, afectando a la salud de los seres humanos, y el medio ambiente, representando elevados costes de saneamiento y en ocasiones problemas graves de salud de las comunidades aledañas. Se establecen tres fases de investigación. En la primera se diseña el sistema de termodesorción a escala piloto, se desarrolla las corridas experimentales, la segunda con corridas en laboratorio para investigar sobre los parámetros que intervienen en el proyecto. Se hacen las corridas respectivas para determinar la eficacia del sistema, y la tercera fase que consiste en comparar los modelos teóricos de Hartley, con los de Hartley Graham –Bryce y el de Hamaker para determinar su aproximación con los resultados reales. Apoyado en investigaciones anteriores, se diseñó y construyó un sistema de desorción térmica, el cual consiste en un horno tipo caja con 4 calentadores (resistencias), y una campana con un filtro para evitar la contaminación atmosférica, así mismo, se diseñó un sistema de control que permitió hacer las corridas con 1/3 de la potencia, con una relación de encendido apagado 3:1 respectivamente. Para validar los resultados obtenidos en el estudio matemático, se compararon dos modelos con la finalidad cuál de ellos se aproxima más a la realidad, se tomaron los ensayos con sus tiempos de operación a las temperaturas y se trabajó a distintas bandas de temperaturas para verificar la fiabilidad del proceso matemático. La temperatura es un variable importante en los procesos de desorción, como los son también la humedad del suelo, pues esta va influir directamente en el tiempo de remediación, por lo que es importante tomarla en cuenta. De igual forma el tipo de suelo va influir en los resultados, siendo las arenas más aptas para este tipo de remediación. Los resultados de la modelización son presentados para temperaturas constantes, el cual difiere de la realidad, pues el proceso de calentamiento es lento y va en accenso dependiendo del contenido de humedad y de las propiedades del suelo. La experimentación realizada concluye con buenos resultados de la aplicación de sistemas de desorción de acuerdo a las variables de Panamá. Con relación al grado de cumplimiento respecto a las normativas actuales relacionadas a los límites máximos permitidos. Los resultados garantizan las posibilidades del proceso de remediación térmica de suelos contaminados con combustibles en rango de diésel, garantizando niveles aceptables de limpieza en un tiempo menor a otras metodologías no destructivas pudieran tomar. ABSTRACT The ultimate goal of this investigation is to enhance the pool of knowledge related to remediation technologies, specifically thermal desorption. The motivation for this study is based on concerns due to pollution of land as one of the most serious environmental impacts caused by anthropogenic effects, specially industrial activities, affecting human health and the environment in general, which represents high reclamation costs, and in some cases, serious health issues in nearby communities. Three phases have been established for this study. The first phase involves the design of a thermal desorption system as a pilot experiment, and associated tests. The second phase consists of laboratory testing to investigate the parameters that affect the investigation, as well as to determine the efficacy of the system. The third phase covers the comparison of theorical models as proposed by Hartley, Hartley Graham – Bryce, and Hamaker, as well as the evaluation of these models versus the laboratory results. Supported by previous researches, the thermal desorption system was designed and installed as a “box” type oven with four heaters (resistances) and one absorption hood with a filter to avoid atmospheric contamination. In the same way, a control system was designed allowing testing with 1/3 of the power, with an on/off rate of 3:1 respectively. In order to validate the results, two mathematical models were compared to identify which model is closer to the experimental results; test results were documented with respective durations and temperatures; and experiments were executed using different ranges of temperature to validate the consistency of the mathematical process. Temperature is an important variable that should be considered for the desorption processes, as well as the humidity content within the soil, that has direct influence over the required duration to achieve remediation. In the same manner, the type of soil also influences the results, where sands are more efficient for this type of remediation process. The results from this experiment are according to constant temperatures, which is not a complete representation of the reality, as the heating process is slow and the temperature gradually increases according to the humidity content and other properties of the soil. The experiment shows good results for the application of thermal desorption systems according to the variables in Panama, as well as the level of compliance required to fulfill current regulations and mandatory maximum limits. The results guarantee the possibility of soil thermo-remediation as a resource to clean sites that have been polluted with diesel-like combustibles, allowing acceptable levels in a period of time that is lower than with other non-destructive remediation technics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is part of a set of publications related with the development of mathematical models aimed to simulate the dynamic input and output of experimental nondestructive tests in order to detect structural imperfections. The structures to be considered are composed by steel plates of thin thickness. The imperfections in these cases are cracks and they can penetrate either a significant part of the plate thickness or be micro cracks or superficial imperfections. The first class of cracks is related with structural safety and the second one is more connected to the structural protection to the environment, particularly if protective paintings can be deteriorated. Two mathematical groups of models have been developed. The first group tries to locate the position and extension of the imperfection of the first class of imperfections, i.e. cracks and it is the object of the present paper. Bending Kirchoff thin plate models belong to this first group and they are used to this respect. The another group of models is dealt with membrane structures under the superficial Rayleigh waves excitation. With this group of models the micro cracks detection is intended. In the application of the first group of models to the detection of cracks, it has been observed that the differences between the natural frequencies of the non cracked and the cracked structures are very small. However, geometry and crack position can be identified quite accurately if this comparison is carried out between first derivatives (mode rotations) of the natural modes are used instead. Finally, in relation with the analysis of the superficial crack existence the use of Rayleigh waves is very promising. The geometry and the penetration of the micro crack can be detected very accurately. The mathematical and numerical treatment of the generation of these Rayleigh waves present and a numerical application has been shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been much debate on the contribution of processes such as the persistence of antigens, cross-reactive stimulation, homeostasis, competition between different lineages of lymphocytes, and the rate of cell turnover on the duration of immune memory and the maintenance of the immune repertoire. We use simple mathematical models to investigate the contributions of these various processes to the longevity of immune memory (defined as the rate of decline of the population of antigen-specific memory cells). The models we develop incorporate a large repertoire of immune cells, each lineage having distinct antigenic specificities, and describe the dynamics of the individual lineages and total population of cells. Our results suggest that, if homeostatic control regulates the total population of memory cells, then, for a wide range of parameters, immune memory will be long-lived in the absence of persistent antigen (T1/2 > 1 year). We also show that the longevity of memory in this situation will be insensitive to the relative rates of cross-reactive stimulation, the rate of turnover of immune cells, and the functional form of the term for the maintenance of homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere’s behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that lead to equilibration of water/energy and nitrogen limitation of net primary productivity. This occurs because as the water flux increases, the potentials for carbon uptake (photosynthesis), and inputs and losses of nitrogen, all increase. As the flux of carbon increases, the amount of nitrogen that can be captured into organic matter and then recycled also increases. Because most plant-available nitrogen is derived from internal recycling, this latter process is critical to sustaining high productivity in environments where water and energy are plentiful. At steady-state, water/energy and nitrogen limitation “equilibrate,” but because the water, carbon, and nitrogen cycles have different response times, inclusion of nitrogen cycling into ecosystem models adds behavior at longer time scales than in purely biophysical models. The tight correlations among nitrogen fluxes with evapotranspiration implies that either climate change or changes to nitrogen inputs (from fertilization or air pollution) will have large and long-lived effects on both productivity and nitrogen losses through hydrological and trace gas pathways. Comprehensive analyses of the role of ecosystems in the carbon cycle must consider mechanisms that arise from the interaction of the hydrological, carbon, and nutrient cycles in ecosystems.