954 resultados para Adenosine 5-Triphosphate, per cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: We investigated the incidence and outcome of progressive multifocal leukoencephalopathy (PML) in human immunodeficiency virus (HIV)-infected individuals before and after the introduction of combination antiretroviral therapy (cART) in 1996. METHODS: From 1988 through 2007, 226 cases of PML were reported to the Swiss HIV Cohort Study. By chart review, we confirmed 186 cases and recorded all-cause and PML-attributable mortality. For the survival analysis, 25 patients with postmortem diagnosis and 2 without CD4+ T cell counts were excluded, leaving a total of 159 patients (89 before 1996 and 70 during 1996-2007). RESULTS: The incidence rate of PML decreased from 0.24 cases per 100 patient-years (PY; 95% confidence interval [CI], 0.20-0.29 cases per 100 PY) before 1996 to 0.06 cases per 100 PY (95% CI, 0.04-0.10 cases per 100 PY) from 1996 onward. Patients who received a diagnosis before 1996 had a higher frequency of prior acquired immunodeficiency syndrome-defining conditions (P = .007) but similar CD4+ T cell counts (60 vs. 71 cells/microL; P = .25), compared with patients who received a diagnosis during 1996 or thereafter. The median time to PML-attributable death was 71 days (interquartile range, 44-140 days), compared with 90 days (interquartile range, 54-313 days) for all-cause mortality. The PML-attributable 1-year mortality rate decreased from 82.3 cases per 100 PY (95% CI, 58.8-115.1 cases per 100 PY) during the pre-cART era to 37.6 cases per 100 PY (95% CI, 23.4.-60.5 cases per 100 PY) during the cART era. In multivariate models, cART was the only factor associated with lower PML-attributable mortality (hazard ratio, 0.18; 95% CI, 0.07-0.50; P < .001), whereas all-cause mortality was associated with baseline CD4+ T cell count (hazard ratio per increase of 100 cells/microL, 0.52; 95% CI, 0.32-0.85; P = .010) and cART use (hazard ratio, 0.37; 95% CI, 0.19-0.75; P = .006). CONCLUSIONS: cART reduced the incidence and PML-attributable 1-year mortality, regardless of baseline CD4+ T cell count, whereas overall mortality was dependent on cART use and baseline CD4+ T cell count.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895–1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agrobacterium tumefaciens translocates T-DNA through a polar VirB/D4 type IV secretion (T4S) system. VirC1, a factor required for efficient T-DNA transfer, bears a deviant Walker A and other sequence motifs characteristic of ParA and MinD ATPases. Here, we show that VirC1 promotes conjugative T-DNA transfer by stimulating generation of multiple copies per cell of the T-DNA substrate (T-complex) through pairwise interactions with the processing factors VirD2 relaxase, VirC2, and VirD1. VirC1 also associates with the polar membrane and recruits T-complexes to cell poles, the site of VirB/D4 T4S machine assembly. VirC1 Walker A mutations abrogate T-complex generation and polar recruitment, whereas the native protein recruits T-complexes to cell poles independently of other polar processing factors (VirC2, VirD1) or T4S components (VirD4 substrate receptor, VirB channel subunits). We propose that A. tumefaciens has appropriated a progenitor ParA/MinD-like ATPase to promote conjugative DNA transfer by: (i) nucleating relaxosome assembly at oriT-like T-DNA border sequences and (ii) spatially positioning the transfer intermediate at the cell pole to coordinate substrate-T4S channel docking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine is a purinergic signaling molecule that regulates various aspects of inflammation and has been implicated in the pathogenesis of chronic lung diseases. Previous studies have demonstrated that adenosine up-regulates IL-6 production through the engagement of the A2B adenosine receptor in various cell types, including alveolar macrophages. IL-6 is elevated in mouse models and humans with chronic lung disease, suggesting a potential role in disease progression. Furthermore, chronic elevation of adenosine in the lungs of adenosine deaminase deficient (Ada-/-) mice leads to the development of pulmonary inflammation, alveolar destruction, and fibrosis, in conjunction with IL-6 elevation. Thus, it was hypothesized that IL-6 contributes to pulmonary inflammation and fibrosis in this model. To test this hypothesis, Ada/IL-6 double knockout mice (Ada/IL-6-/-) were generated to assess the consequences of genetically removing IL-6 on adenosine-dependent pulmonary injury. Ada/IL-6-/- mice exhibited a significant reduction in inflammation, alveolar destruction, and pulmonary fibrosis. Next, Ada-/- mice were treated systematically with IL-6 neutralizing antibodies to test the efficacy of blocking IL-6 on chronic lung disease. These treatments were associated with decreased pulmonary inflammation, alveolar destruction, and fibrosis. To determine the role of IL-6 in a second model of pulmonary fibrosis, wild type mice and IL-6-/- mice were subjected to intraperitoneal injections of bleomycin twice a week for four weeks. Results demonstrated that IL-6-/- mice developed reduced pulmonary fibrosis. To examine a therapeutic approach in this model, wild type mice exposed to bleomycin were treated with IL-6 neutralizing antibodies. Similar results were observed as with Ada-/- mice, namely diminished pulmonary inflammation and fibrosis. In both models, elevations in IL-6 were associated with increased phosphorylated STAT-3 in the nuclei of numerous cell types in the airways, including type II alveolar epithelial cells (AEC). Genetic removal and neutralization of IL-6 in both models was associated with decreased STAT-3 activation in type II AEC. The mechanism of activation in these cells that lack the membrane bound IL-6Ra suggests IL-6 trans-signaling may play a role in regulating fibrosis. Characterization of this mechanism demonstrated that the soluble IL-6Ra (sIL-6Ra) is upregulated in both models during chronic conditions. In vitro studies in MLE-12 alveolar epithelial cells confirmed that IL-6, in combination with the sIL-6Ra, activates STAT-3 and TWIST in association with enhancement of epithelial-to-mesenchymal transition, which can contribute to fibrosis. Similarly, patients with idiopathic pulmonary fibrosis demonstrated a similar pattern of increased IL-6 expression, STAT-3 activation, and sIL-6Ra increases. These findings demonstrate that adenosine-dependent elevations in IL-6 contribute to the development and progression of pulmonary inflammation and fibrosis. The implications from these studies are that adenosine and/or IL-6 neutralizing agents represent novel therapeutic targets for the treatment of pulmonary disorders where fibrosis is a detrimental component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of premature chromosome condensation (PCC) has been used primarily to study interphase chromosomes of somatic cells. In this study, mitotic cells were fused to cells from the mouse testes to examine the chromosomes of germ cells. The testes contain various types of cells, both germinal and nongerminal. In these initial studies, four types of PCC morphologies were observed. Chromosome morphology of the PCC and labeling experiments demonstrated the mouse cell origin of various PCC. Attempts were next made to determine the cell types producing the PCC. Spermatogonia, diplotene spermatocytes, secondary spermatocytes and round spermatids are proposed to be the origin of the PCC morphologies. Some PCC could be banded by G and C banding techniques and the mouse chromosomes identified.^ Studies were subsequently undertaken to evaluate this technique as a method of evaluating damage to germ cells. Testicular cells from irradiated mice were fused to mitotic cells and the PCC examined. Both round spermatids and secondary spermatocytes exhibited chromosome damage in the form of chromatid breaks. A linear correlation was found between the dose of irradiation and the number of breaks per cell. This technique may develop into a useful method for evaluating the clastogenic effect of agents on the germ cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kornerupine and prismatine were introduced independently by Lorenzen in 1884 (but published in 1886 and 1893) and by Sauer in 1886, respectively. Ussing (1889) showed that the two minerals were sufficiently close crystallographically and chemically to be regarded as one species. However, recent analyses of boron using the ion microprobe and crystal structure refinement, indicate that the boron content of one tetrahedral site in kornerupine ranges from 0 to 1. Kornerupine and prismatine, from their respective type localities of Fiskenaesset, Greenland and Waldheim, Germany, are distinct minerals, members of an isomorphic series differing in boron content. For this reason, we re-introduce Sauer's name prismatine for kornerupines with B > 0.5 atoms per formula unit (p.f.u.) of 22(O,OH,F), and restrict the name kornerupine sensu stricto to kornerupines with B < 0.5 p.f.u. Kornerupine sensu lato is an appropriate group name for kornerupine of unknown boron content. Kornerupine sensu stricto and prismatine from the type localities differ also in Fe2+/Mg ratio, Si - (Mg + Fe2+ + Mn) content, Al content, F content, colour, density, cell parameters, and paragenesis. Both minerals formed under granulite-facies conditions with sapphirine and phlogopite, but kornerupine sensu stricto is associated with anorthite and homblende or gedrite, whereas prismatine is found with oligoclase (An9-13), sillimanite, garnet, and/or tourmaline. Occurrences at other localities suggest that increasing boron content extends the stability range of prismatine relative to that of kornerupine sensu stricto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the central nervous system.[1] It is difficult to characterize transmembrane dynamic receptors with classical structural biology approaches like crystallization and x-ray. The use of photoaffinity probes is an alternative approach to identify regions in the protein that are important for the binding of small molecules. Therefore we synthesized a small library of photoaffinity probes by conjugating photolabile building blocks via various linkers to granisetron which is a known antagonist of the 5-HT3R. We were able to obtain several compounds with diverse linker lengths and different photo-labile moieties that show nanomolar binding affinities for the orthosteric binding site. Further on we developed a stable 5-HT3R overexpressing cell line and a purification method to yield the receptor in a high purity. Currently we are investigating crosslinking experiments and subsequent MS – analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing evidence indicates that tumor microenvironment (TME) is crucial in tumor survival and metastases. Inflammatory cells accumulate around tumors and strangely appear to be permissive to their growth. One key stroma cell is the mast cell (MC), which can secrete numerous pro- and antitumor molecules. We investigated the presence and degranulation state of MC in pancreatic ductal adenocarcinoma (PDAC) as compared to acute ancreatitis (AP). Three different detection methods: (a) toluidine blue staining, as well as immunohistochemistry for (b) tryptase and (c) c-kit, were utilized to assess the number and extent of degranulation of MC in PDAC tissue (n=7), uninvolved pancreatic tissue derived from tumor-free margins (n=7) and tissue form AP (n=4). The number of MC detected with all three methods was significantly increased in PDAC, as compared to normal pancreatic tissue derived from tumor-free margins (p<0.05). The highest number of MC was identified by c-kit, 22.2∓7.5 per high power field (HPF) in PDAC vs 9.7∓5.1 per HPF in normal tissue. Contrary to MC in AP, where most of the detected MC were found degranulated, MC in PDAC appeared intact. In conclusion, MC are increased in number, but not degranulated in PDAC, suggesting that they may contribute to cancer growth by permitting selective release of pro-tumorogenic molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to analyse whether offspring of mature Quercus ilex trees grown under life-long elevated pCO2 show alterations in the physiological response to elevated pCO2 in comparison with those originating from mature trees grown at current ambient pCO2. To investigate changes in C- (for changes in photosynthesis, biomass and lignin see Polle, McKee & Blaschke Plant, Cell and Environment 24, 1075–1083, 2001), N-, and S-metabolism soluble sugar, soluble non-proteinogenic nitrogen compounds (TSNN), nitrate reductase (NR), thiols, adenosine 5′-phosphosulphate (APS) reductase, and anions were analysed. For this purpose Q. ilex seedlings were grown from acorns of mother tree stands at a natural spring site (elevated pCO2) and a control site (ambient pCO2) of the Laiatico spring, Central Italy. Short-term elevated pCO2 exposure of the offspring of control oaks lead to higher sugar contents in stem tissues, to a reduced TSNN content in leaves, and basipetal stem tissues, to diminished thiol contents in all tissues analysed, and to reduced APS reductase activity in both, leaves and roots. Most of the components of C-, N- and S-metabolism including APS reductase activity which were reduced due to short-term elevated pCO2 exposure were recovered by life-long growth under elevated pCO2 in the offspring of spring oaks. Still TSNN contents in phloem exudates increased, nitrate contents in lateral roots and glutathione in leaves and phloem exudates remained reduced in these plants. The present results demonstrated that metabolic adaptations of Q. ilex mother trees to elevated pCO2 can be passed to the next generation. Short- and long-term effects on source-to-sink relation and physiological and genetic acclimation to elevated pCO2 are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The effect of chilling on the intercellular distribution of mRNAs for enzymes of assimilatory sulfate reduction, the activity of adenosine 5′-phosphosulfate reductase (APR), and the level of glutathione was analysed in leaves and roots of maize (Zea mays L). At 25 °C the mRNAs for APR, ATP sulfurylase, and sulfite reductase accumulated in bundle-sheath only, whereas the mRNA for O-acetylserine sulfhydrylase was also detected in mesophyll cells. Glutathione was predominantly detected in mesophyll cells; however, oxidized glutathione was equally distributed between the two cell types. Chilling at 12 °C induced oxidative stress which resulted in increased concentrations of oxidized glutathione in both cell types and a prominent increase of APR mRNA and activity in bundle-sheath cells. After chilling, mRNAs for APR and sulfite reductase, as well as low APR activity, were detected in mesophyll cells. In roots, APR mRNA and activity were at higher levels in root tips than in the mature root and were greatly increased after chilling. These results demonstrate that chilling stress affected the levels and the intercellular distribution of mRNAs for enzymes of sulfate assimilation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of the enzymes catalyzing the first two steps of sulfate assimilation, ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR), are confined to bundle sheath cells in several C4 monocot species. With the aim to analyze the molecular basis of this distribution and to determine whether it was a prerequisite or a consequence of the C4 photosynthetic mechanism, we compared the intercellular distribution of the activity and the mRNA of APR in C3, C3-C4, C4-like, and C4 species of the dicot genusFlaveria. Measurements of APR activity, mRNA level, and protein accumulation in six Flaveria species revealed that APR activity, cysteine, and glutathione levels were significantly higher in C4-like and C4 species than in C3 and C3-C4 species. ATP sulfurylase and APR mRNA were present at comparable levels in both mesophyll and bundle sheath cells of C4 speciesFlaveria trinervia. Immunogold electron microscopy demonstrated the presence of APR protein in chloroplasts of both cell types. These findings, taken together with results from the literature, show that the localization of assimilatory sulfate reduction in the bundle sheath cells is not ubiquitous among C4 plants and therefore is neither a prerequisite nor a consequence of C4photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

9-β-D-arabinosylguanine (ara-G), an analogue of deoxyguanosine, has demonstrated T-lymphoblast selective anti-leukemia activity both in vitro and in vivo in cell lines and primary cells and in phase I investigations. The present work was initiated to identify factors that result in this selectivity. ^ The cytotoxicity of ara-G is manifest only after its phosphorylation. Experiments using cell lines transfected to overexpress specific nucleoside kinases demonstrated that the phosphorylation of ara-G to its monophosphate is by both cytoplasmic deoxycytidine kinase and mitochondria) deoxyguanosine kinase. Ara-G monophosphate is converted to its 5′-triphosphate (ara-GTP) in cells by these kinases and then incorporated into DNA. Mechanistic studies demonstrated that incorporation of ara-GTP into DNA was a necessary event for the induction of cell death. ^ Pharmacokinetic and pharmacodynamic studies utilizing three human acute leukemia cell lines, CEM (T-lymphoblastic), Raji (B-lymphoblastic), and ML-1 (myeloid) were performed. CEM cells were most sensitive to ara-G-induced inhibition of colony formation, accumulated ara-GTP at a faster rate and to a greater degree than either Raji or ML-1, but incorporated the lowest number of ara-G molecules into DNA. The position of incorporation was internal and similar in all cell lines. The terminal elimination phase of ara-GTP was >24 h and similar in these cells. Comparisons between inhibition of colony formation and ara-GTP incorporation into DNA demonstrated that while within a cell line there was correlation among these parameters, between cell lines there was no relationship between number of incorporated ara-G molecules and ara-G(TP)-mediated toxicity suggesting that there were additional factors. ^ The expression of membrane bound Fas and Fast was unchanged in all cell lines. In contrast, there was a 2-fold increase in soluble Fast, which was found exclusively in CEM cells. Ara-G-mediated apoptosis in CEM occurred from all phases of the cell cycle and was abrogated partially by Fas antagonist antibodies. These data suggest that Fas-mediated cell death due to the liberation of sFasL may be responsible for the hypersensitivity to ara-G manifested by immature T-cells such as CEM. The role of Fas in ara-G induced death of acute T-lymphoblastic leukemia cells during therapy needs to be tested. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin-like growth factor binding protein 2 (IGFBP2) is a protein known to be overexpressed in a majority of glioblastoma multiforme (GBM) tumors. While it is known the IGFBP2 is involved in promoting GBM tumor cell invasion, no mechanism exists for how the protein is involved in signal transduction pathways leading to enhanced cell invasion. ^ We follow up on preliminary microarray data on IGFBP2-overexpressing GBM cells and protein sequence analysis of IGFBP2 in generating the hypothesis that IGFBP2 interacts with integnn α5 in regulating cell mobility. Microarray data showing upregulation of integrin α5 by IGFBP2 is validated and evidence of protein-protein interaction between IGFBP2 and integrin α5 is found. The exact binding domain on IGFBP2 responsible for its interaction with integrin α5 is also determined, confirming our initial findings and reaffirming that the IGFBP2/integrin α5 interaction is specific. Disruption of this interaction resulted in attenuation of IGFBP2-enhanced cell mobility. Further, we found that cell mobility is only enhanced when IGFBP2 and integrin α5 are both overexpressed and able to interact with each other. ^ We also determined fibronectin to be a critical player in the activation of the IGFBP2/integrin α5 pathway. The activation of this pathway appears to be progressive and initiates once GBM cells have sufficiently established anchorage. ^