989 resultados para Adenocarcinoma bronquíolo-alveolar
Resumo:
Mechanical ventilation is not only a life saving treatment but can also cause negative side effects. One of the main complications is inflammation caused by overstretching of the alveolar tissue. Previously, studies investigated either global strains or looked into which states lead to inflammatory reactions in cell cultures. However, the connection between the global deformation, of a tissue strip or the whole organ, and the strains reaching the single cells lining the alveolar walls is unknown and respective studies are still missing. The main reason for this is most likely the complex, sponge-like alveolar geometry, whose three-dimensional details have been unknown until recently. Utilizing synchrotron-based X-ray tomographic microscopy, we were able to generate real and detailed three-dimensional alveolar geometries on which we have performed finite-element simulations. This allowed us to determine, for the first time, a three-dimensional strain state within the alveolar wall. Briefly, precision-cut lung slices, prepared from isolated rat lungs, were scanned and segmented to provide a three-dimensional geometry. This was then discretized using newly developed tetrahedral elements. The main conclusions of this study are that the local strain in the alveolar wall can reach a multiple of the value of the global strain, for our simulations up to four times as high and that thin structures obviously cause hotspots that are especially at risk of overstretching.
Resumo:
We report a 26-year-old female patient who was diagnosed within 4 years with chest sarcoma, lung adenocarcinoma, and breast cancer. While her family history was unremarkable, DNA sequencing of TP53 revealed a germline de novo non-sense mutation in exon 6 p.Arg213X. One year later, she further developed a contralateral ductal carcinoma in situ, and 18 months later a jaw osteosarcoma. This case illustrates the therapeutic pitfalls in the care of a young cancer patient with TP53 de novo germline mutations and the complications related to her first-line therapy. Suggestion is made to use the less stringent Chompret criteria for germline TP53 mutation screening. Our observation underlines the possibly negative effect of radiotherapy in generating second tumors in patients with a TP53 mutation. We also present a review of six previously reported cases, comparing their cancer phenotypes with those generally produced by TP53 mutations.
Resumo:
We present a microfluidic epithelial wound-healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow-focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system, a technique that is reported here for the first time. We demonstrate that alveolar epithelial cells cultured in a microfluidic environment preserve their phenotype before and after wounding. In addition, we report a wound-healing benefit induced by addition of HGF to the cell culture medium (19.2 vs. 13.5 μm h(-1) healing rate).
Resumo:
MicroRNAs are small, noncoding RNAs that suppress gene expression by binding to the 3' untranslated region (UTR) and thereby repress translation or decrease messenger RNA stability. Inhibitor of differentiation 1 (ID1) is a putative stem-cell gene involved in invasion and angiogenesis. We previously showed that ID1 is regulated by Src kinases, overexpressed in human lung adenocarcinoma, and targeted by Src-dependent microRNAs. The current study focused on the association between miR-381 and ID1 in lung adenocarcinoma.
Resumo:
The increasing relevance of the cancer stem cell (CSC) hypothesis and the impact of CSC-associated markers in the carcinogenesis of solid tumours may provide potential prognostic implications in lung cancer. We propose that a collective genetic analysis of established CSC-related markers will generate data to better define the role of putative CSCs in lung adenocarcinoma (LAC).
Resumo:
To evaluate dental arch relationship in preschoolers with unilateral cleft lip and palate after early alveolar bone grafting (ABG).
Resumo:
This study compared the effects of isoflurane in pigs (n=10 Yorkshire-Landrace cross) and dairy goats (n=10) by evaluation of electroencephalographic (EEG) burst suppression thresholds (BST) in the cerebral cortex and minimum alveolar concentration (MAC) values in the spinal cord. The study also investigated whether individual MAC values can predict the effects of isoflurane on the cerebral cortex. MAC values and BST/MAC ratios were significantly different between species. Inhibition of movement by isoflurane may be less effective in pigs than in goats. No significant correlation was found between individual MAC and BST values, indicating that in single animals the individual MAC poorly reflects the cerebrocortical depressant effect of isoflurane in pigs and goats.
Resumo:
Alveolar echinococcosis (AE) is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis and causes severe disease in the human liver, and occasionally in other organs, that is fatal when treatment is unsuccessful. The present chemotherapy against AE is based on mebendazole and albendazole. Albendazole treatment has been found to be ineffective in some instances, is parasitostatic rather than parasiticidal, and usually involves the lifelong uptake of large doses of drugs. Thus, new treatment options are urgently needed. In this study we investigated the in vitro and in vivo efficacy of mefloquine against E. multilocularis metacestodes. Treatment using mefloquine (20 muM) against in vitro cultures of metacestodes resulted in rapid and complete detachment of large parts of the germinal layer from the inner surface of the laminated layer within a few hours. The in vitro activity of mefloquine was dependent on the dosage. In vitro culture of metacestodes in the presence of 24 muM mefloquine for a period of 10 days was parasiticidal, as determined by murine bioassays, while treatment with 12 muM was not. Oral application of mefloquine (25 mg/kg of body weight administered twice a week for a period of 8 weeks) in E. multilocularis-infected mice was ineffective in achieving any reduction of parasite weight, whereas treatment with albendazole (200 mg/kg/day) was highly effective. However, when the same mefloquine dosage was applied intraperitoneally, the reduction in parasite weight was similar to the reduction seen with oral albendazole application. Combined application of both drugs did not increase the treatment efficacy. In conclusion, mefloquine represents an interesting drug candidate for the treatment of AE, and these results should be followed up in appropriate in vivo studies.
Resumo:
The parasite Echinococcus multilocularis was first detected in The Netherlands in 1996 and repeated studies have shown that the parasite subsequently spread in the local population of foxes in the province of Limburg. It was not possible to quantify the human risk of alveolar echinococcosis because no relationship between the amount of parasite eggs in the environment and the probability of infection in humans was known. Here, we used the spread of the parasite in The Netherlands as a predictor, together with recently published historical records of the epidemiology of alveolar echinococcosis in Switzerland, to achieve a relative quantification of the risk. Based on these analyses, the human risk in Limburg was simulated and up to three human cases are predicted by 2018. We conclude that the epidemiology of alveolar echinococcosis in The Netherlands might have changed from a period of negligible risk in the past to a period of increasing risk in the forthcoming years.
Resumo:
Microfluidic systems have become competitive tools in the invitro modelling of diseases and promising alternatives to animal studies. They allow obtaining more invivo like conditions for cellular assays. Research in idiopathic pulmonary fibrosis could benefit from this novel methodological approach to understand the pathophysiology of the disease & develop efficient therapies. The use of hepatocyte growth factor (HGF) for alveolar reepithelisation is a promising approach. In this study, we show a new microfluidic system to analyse the effects of HGF on injured alveolar epithelial cells. Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells (10,000 cells) were seeded and studied in these microfluidic systems with media perfusion (1μl/30min). Injury tests were made on the cells by the perfusion with media containing H2O2 or bleomycin. The degree of injury was then assessed by a metabolic and an apoptotic assays. Wound assays were also performed with a central laminar flow of trypsin. Monitoring of wound closure with HGF vs control media was assessed. The alveolar A549 epithelial cells grew and proliferated in the microfluidic system. In the wound closure assay, the degree of wound closure after 5 hours was (53.3±1.3%) with HGF compared to (9.8±2.4%) without HGF (P <0.001). We present a novel microfluidic model that allows culture, injury and wounding of A549 epithelial cells and represents the first step towards the development of an invitro reconstitution of the alveolar-capillary interface. We were also able to confirm that HGF increased alveolar epithelial repair in this system.
Resumo:
Background: Microfluidics system are novel tools to study cell-cell interactions in vitro. This project focuses on the development of a new microfluidic device to co-culture alveolar epithelial cells and mesenchymal stem cells to study cellular interactions involved in healing the injured alveolar epithelium. Methods: Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells were seeded and injury tests were made on the cells by perfusion with media containing H2O2 or bleomycin during 6 or 18hrs. Rat Bone marrow derived stromal cells (BMSC) were then introduced into the system and cell-cell interaction was studied over 24 hrs. Results: A successful co-culture of A549 alveolar epithelial cells and BMS was achieved in the microfluidic system. The seeded alveolar epithelial cells and BMSC adhered to the bottom surface of the microfluidic device and proliferated under constant perfusion. Epithelial injury to mimic mechanisms seen in idiopathic pulmonary fibrosis was induced in the microchannels by perfusing with H2O2 or bleomycin. Migration of BMSC towards the injured epithelium was observed as well as cell-cell interaction between the two cell types was also seen. Conclusion: We demonstrate a novel microfluidic device aimed at showing interactions between different cell types on the basis of a changing microenvironment. Also we were able to confirm interaction between injured alvolar epithelium and BMSC, and showed that BMSC try to heal the injured epitelium.
Resumo:
Pancreatic ductal adenocarcinoma follows a multistep model of progression through precursor lesions called pancreatic intraepithelial neoplasia (PanIN). The high mobility group A1 (HMGA1) and high mobility group A2 (HMGA2) proteins are architectural transcription factors that have been implicated in the pathogenesis and progression of malignant tumours, including pancreatic cancer. The aim of this study was to explore the role of HMGA1 and HMGA2 in pancreatic carcinogenesis.
Resumo:
PURPOSE: Neoadjuvant treatment is an accepted standard approach for treating locally advanced esophago-gastric adenocarcinomas. Despite a response of the primary tumor, a significant percentage dies from tumor recurrence. The aim of this retrospective exploratory study from two academic centers was to identify predictors of survival and recurrence in histopathologically responding patients. METHODS: Two hundred thirty one patients with adenocarcinomas (esophagus: n = 185, stomach: n = 46, cT3/4, cN0/+, cM0) treated with preoperative chemotherapy (n = 212) or chemoradiotherapy (n = 19) followed by resection achieved a histopathological response (regression 1a: no residual tumor (n = 58), and regression 1b < 10 % residual tumor (n = 173)). RESULTS: The estimated median overall survival was 92.4 months (5-year survival, 56.6 %) for all patients. For patients with regression 1a, median survival is not reached (5-year survival, 71.6 %) compared to patients with regression 1b with 75.3 months median (5-year survival, 52.2 %) (p = 0.031). Patients with a regression 1a had lymph node metastases in 19.0 versus 33.7 % in regression 1b. The ypT-category (p < 0.001), the M-category (p = 0.005), and the type of treatment (p = 0.04) were found to be independent prognostic factors in R0-resected patients. The recurrence rate was 31.7 % (n = 66) (local, 39.4 %; peritoneal carcinomatosis, 25.7 %; distant metastases, 50 %). Recurrence was predicted by female gender (p = 0.013), ypT-category (p = 0.007), and M-category (p = 0.003) in multivariate analysis. CONCLUSION: Response of the primary tumor does not guarantee recurrence-free long-term survival, but histopathological complete responders have better prognosis compared to partial responders. Established prognostic factors strongly influence the outcome, which could, in the future, be used for stratification of adjuvant treatment approaches. Increasing the rate of histopathological complete responders is a valid endpoint for future clinical trials investigating new drugs.
Resumo:
To characterize proteomic changes found in Barrett's adenocarcinoma and its premalignant stages, the proteomic profiles of histologically defined precursor and invasive carcinoma lesions were analyzed by MALDI imaging MS. For a primary proteomic screening, a discovery cohort of 38 fresh frozen Barrett's adenocarcinoma patient tissue samples was used. The goal was to find proteins that might be used as markers for monitoring cancer development as well as for predicting regional lymph node metastasis and disease outcome. Using mass spectrometry for protein identification and validating the results by immunohistochemistry on an independent validation set, we could identify two of 60 differentially expressed m/z species between Barrett's adenocarcinoma and the precursor lesion: COX7A2 and S100-A10. Furthermore, among 22 m/z species that are differentially expressed in Barrett's adenocarcinoma cases with and without regional lymph node metastasis, one was identified as TAGLN2. In the validation set, we found a correlation of the expression levels of COX7A2 and TAGLN2 with a poor prognosis while S100-A10 was confirmed by multivariate analysis as a novel independent prognostic factor in Barrett's adenocarcinoma. Our results underscore the high potential of MALDI imaging for revealing new biologically significant molecular details from cancer tissues which might have potential for clinical application. This article is part of a Special Issue entitled: Translational Proteomics.