921 resultados para Adaptive design, D-optimal design, MCMC, Pharmacokinetics


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Si les principes d’utilisabilité guident la conception de solutions de design interactif pour s’assurer que celles-ci soient « utilisables », quels principes guident la conception d’objets interactifs pour s’assurer que l’expérience subjective de l’usager (UX) soit adéquate et mémorable? Que manque-t-il au cadre de l‘UX pour expliquer, comprendre, et anticiper en tant que designer une expérience mémorable (‘an experience’; Dewey, 1934)? La question centrale est issue d’une double problématique : (1) le cadre théorique de l’UX est incomplet, et (2) les processus et capacités des designers ne sont pas considérés et utilisés à leur pleine capacité en conception UX. Pour répondre à cette question, nous proposons de compléter les modèles de l’UX avec la notion d’expérience autotélique qui appartient principalement à deux cadres théoriques ayant bien cerné l’expérience subjective, soit l’expérience optimale (ou Flow) de Csikszentmihalyi (1988) et l’expérience esthétique selon Schaeffer (2001). L’autotélie est une dimension interne du Flow alors qu’elle couvre toute l’expérience esthétique. L’autotélie est une expérience d’éveil au moment même de l’interaction. Cette prise de conscience est accompagnée d’une imperceptible tension de vouloir faire durer ce moment pour faire durer le plaisir qu’il génère. Trois études exploratoires ont été faites, s’appuyant sur une analyse faite à partir d’un cadre théorique en trois parties : le Flow, les signes d’activité non verbale (les gestes physiques) et verbale (le discours) ont été évalués pour voir comment ceux-ci s’associent. Nos résultats tendent à prouver que les processus spatiaux jouent un rôle de premier plan dans l’expérience autotélique et par conséquent dans une UX optimale. De plus, ils suggèrent que les expériences pragmatique et autotélique sont ancrées dans un seul et même contenu, et que leur différence tient au type d’attention que le participant porte sur l’interaction, l’attention ordinaire ou de type autotélique. Ces résultats nous ont menés à proposer un modèle pour la conception UX. L’élément nouveau, resté jusqu’alors inaperçu, consiste à s’assurer que l’interface (au sens large) appelle une attitude réceptive à l’inattendu, pour qu’une information puisse déclencher les processus spatiaux, offrant une opportunité de passer de l’attention ordinaire à l’attention autotélique. Le nouveau modèle ouvre la porte à une meilleure valorisation des habiletés et processus du designer au sein de l’équipe multidisciplinaire en conception UX.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Development of organic molecules that exhibit selective interactions with different biomolecules has immense significance in biochemical and medicinal applications. In this context, our main objective has been to design a few novel functionaIized molecules that can selectively bind and recognize nucleotides and DNA in the aqueous medium through non-covalent interactions. Our strategy was to design novel cycIophane receptor systems based on the anthracene chromophore linked through different bridging moieties and spacer groups. It was proposed that such systems would have a rigid structure with well defined cavity, wherein the aromatic chromophore can undergo pi-stacking interactions with the guest molecules. The viologen and imidazolium moieties have been chosen as bridging units, since such groups, can in principle, could enhance the solubility of these derivatives in the aqueous medium as well as stabilize the inclusion complexes through electrostatic interactions.We synthesized a series of water soluble novel functionalized cyclophanes and have investigated their interactions with nucleotides, DNA and oligonucIeotides through photophysical. chiroptical, electrochemical and NMR techniques. Results indicate that these systems have favorable photophysical properties and exhibit selective interactions with ATP, GTP and DNA involving electrostatic. hydrophobic and pi-stacking interactions inside the cavity and hence can have potential use as probes in biology.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis Entitled phenylethynylarene based Donor-Acceptor systems:Desigh,Synthesis and Photophysical studies. A strategy for the design of donor-acceptor dyads, wherein decay of the charge separated (CS) state to low lying local triplet levels could possibly be prevented, is proposed. In order to examine this strategy, a linked donor-acceptor dyad BPEPPT with bis(phenylethYlly/)pyrene (BPEP) as the light absorber and acceptor and phenothiazine (PT) as donor was designed and photoinduced electron transfer in the dyad investigated. Absorption spectra of the dyad can be obtained by adding contributions due 10 the BPEP and PT moieties indicating that the constituents do not interact in the ground stale. Fluorescence of the BPEP moiety was efficiently quenched by the PT donor and this was attributed to electron lransfer from PT to BPEP. Picosecond transient absorption studies suggested formation of a charge separated state directly from the singlet excited state of BPEP. Nanosecond flash photolysis experiments gave long-ived transient absorptions assignable to PT radical cation and BPEP radical anion. These assignments were confirmed by oxygen quenching studies and secondary electron transfer experiments. Based on the available data, energy level diagram for BPEP-PT was constructed. The long lifetime of the charge separated state was attributed to the inverted region effects. The CS state did not undergo decay to low lying BPEP triplet indicating the success of our strategy

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Design and study of molecular receptors capable of mimicking natural processes has found applications in basic research as well as in the development of potentially useful technologies. Of the various receptors reported, the cyclophanes are known to encapsulate guest molecules in their cavity utilizing various non–covalent interactions resulting in significant changes in their optical properties. This unique property of the cyclophanes has been widely exploited for the development of selective and sensitive probes for a variety of guest molecules including complex biomolecules. Further, the incorporation of metal centres into these systems added new possibilities for designing receptors such as the metallocyclophanes and transition metal complexes, which can target a large variety of Lewis basic functional groups that act as selective synthetic receptors. The ligands that form complexes with the metal ions, and are capable of further binding to Lewis-basic substrates through open coordination sites present in various biomolecules are particularly important as biomolecular receptors. In this context, we synthesized a few anthracene and acridine based metal complexes and novel metallocyclophanes and have investigated their photophysical and biomolecular recognition properties.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The demand for new telecommunication services requiring higher capacities, data rates and different operating modes have motivated the development of new generation multi-standard wireless transceivers. A multi-standard design often involves extensive system level analysis and architectural partitioning, typically requiring extensive calculations. In this research, a decimation filter design tool for wireless communication standards consisting of GSM, WCDMA, WLANa, WLANb, WLANg and WiMAX is developed in MATLAB® using GUIDE environment for visual analysis. The user can select a required wireless communication standard, and obtain the corresponding multistage decimation filter implementation using this toolbox. The toolbox helps the user or design engineer to perform a quick design and analysis of decimation filter for multiple standards without doing extensive calculation of the underlying methods.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents the optimal design of a sur- face mounted permanent magnet Brushless DC mo- tor (PMBLDC) meant for spacecraft applications. The spacecraft applications requires the choice of a torques motor with high torque density, minimum cogging torque, better positional stability and high torque to inertia ratio. Performance of two types of machine con¯gurations viz Slotted PMBLDC and Slotless PMBLDC with halbach array are compared with the help of analytical and FE methods. It is found that unlike a Slotted PMBLDC motor, the Slotless type with halbach array develops zero cogging torque without reduction in the developed torque. Moreover, the machine being coreless provides high torque to inertia ratio and zero magnetic stiction

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper presents a cascaded 2-2-2 reconfigurable sigma-delta modulator that can handle GSM, WCDMA and WLAN standards. The modulator makes use of a low-distortion swing suppression topology which is highly suitable for wide band applications. In GSM mode, only the first stage (2nd order Σ-Δ ADC) is turned on to achieve 88dB dynamic range with oversampling ratio of 160 for a bandwidth of 200KHz; in WCDMA mode a 2-2 cascaded structure (4th order) is turned on with 1-bit in the first stage and 2-bit in the second stage to achieve 74 dB dynamic range with oversampling ratio of 16 for a bandwidth of 2MHz and a 2-2-2 cascaded MASH architecture with a 4-bit in the last stage to achieve a dynamic range of 58dB for a bandwidth of 20MHz. The novelty lies in the fact that unused blocks of second and third stages can be switched off taking into considerations like power consumption. The modulator is designed in TSMC 0.18um CMOS technology and operates at 1.8 supply voltage.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The focus of self-assembly as a strategy for the synthesis has been confined largely to molecules, because of the importance of manipulating the structure of matter at the molecular scale. We have investigated the influence of temperature and pH, in addition to the concentration of the capping agent used for the formation of the nano-bio conjugates. For example, the formation of the narrower size distribution of the nanoparticles was observed with the increase in the concentration of the protein, which supports the fact that γ-globulin acts both as a controller of nucleation as well as stabiliser. As analyzed through various photophysical, biophysical and microscopic techniques such as TEM, AFM, C-AFM, SEM, DLS, OPM, CD and FTIR, we observed that the initial photoactivation of γ-globulin at pH 12 for 3 h resulted in small protein fibres of ca. Further irradiation for 24 h, led to the formation of selfassembled long fibres of the protein of ca. 5-6 nm and observation of surface plasmon resonance band at around 520 nm with the concomitant quenching of luminescence intensity at 680 nm. The observation of light triggered self-assembly of the protein and its effect on controlling the fate of the anchored nanoparticles can be compared with the naturally occurring process such as photomorphogenesis.Furthermore,our approach offers a way to understand the role played by the self-assembly of the protein in ordering and knock out of the metal nanoparticles and also in the design of nano-biohybrid materials for medicinal and optoelectronic applications. Investigation of the potential applications of NIR absorbing and water soluble squaraine dyes 1-3 for protein labeling and anti-amyloid agents forms the subject matter of the third chapter of the thesis. The study of their interactions with various proteins revealed that 1-3 showed unique interactions towards serum albumins as well as lysozyme. 69%, 71% and 49% in the absorption spectra as well as significant quenching in the fluorescence intensity of the dyes 1-3, respectively. Half-reciprocal analysis of the absorption data and isothermal titration calorimetric (ITC) analysis of the titration experiments gave a 1:1 stoichiometry for the complexes formed between the lysozyme and squaraine dyes with association constants (Kass) in the range 104-105 M-1. We have determined the changes in the free energy (ΔG) for the complex formation and the values are found to be -30.78, -32.31 and -28.58 kJmol-1, respectively for the dyes 1, 2 and 3. Furthermore, we have observed a strong induced CD (ICD) signal corresponding to the squaraine chromophore in the case of the halogenated squaraine dyes 2 and 3 at 636 and 637 nm confirming the complex formation in these cases. To understand the nature of interaction of the squaraine dyes 1-3 with lysozyme, we have investigated the interaction of dyes 1-3 with different amino acids. These results indicated that the dyes 1-3 showed significant interactions with cysteine and glutamic acid which are present in the side chains of lysozyme. In addition the temperature dependent studies have revealed that the interaction of the dye and the lysozyme are irreversible. Furthermore, we have investigated the interactions of these NIR dyes 1-3 with β- amyloid fibres derived from lysozyme to evaluate their potential as inhibitors of this biologically important protein aggregation. These β-amyloid fibrils were insoluble protein aggregates that have been associated with a range of neurodegenerative diseases, including Huntington, Alzheimer’s, Parkinson’s, and Creutzfeldt-Jakob diseases. We have synthesized amyloid fibres from lysozyme through its incubation in acidic solution below pH 4 and by allowing to form amyloid fibres at elevated temperature. To quantify the binding affinities of the squaraine dyes 1-3 with β-amyloids, we have carried out the isothermal titration calorimetric (ITC) measurements. The association constants were determined and are found to be 1.2 × 105, 3.6× 105 and 3.2 × 105 M-1 for the dyes, 1-3, respectively. To gain more insights into the amyloid inhibiting nature of the squaraine dyes under investigations, we have carried out thioflavin assay, CD, isothermal titration calorimetry and microscopic analysis. The addition of the dyes 1-3 (5μM) led to the complete quenching in the apparent thioflavin fluorescence, thereby indicating the destabilization of β-amyloid fibres in the presence of the squaraine dyes. Further, the inhibition of the amyloid fibres by the squaraine dyes 1-3, has been evidenced though the DLS, TEM AFM and SAED, wherein we observed the complete destabilization of the amyloid fibre and transformation of the fibre into spherical particles of ca. These results demonstrate the fact that the squaraine dyes 1-3 can act as protein labeling agents as well as the inhibitors of the protein amyloidogenesis. The last chapter of the thesis describes the synthesis and investigation of selfassembly as well as bio-imaging aspects of a few novel tetraphenylethene conjugates 4-6.Expectedly, these conjugates showed significant solvatochromism and exhibited a hypsochromic shift (negative solvatochromism) as the solvent polarity increased, and these observations were justified though theoretical studies employing the B3LYP/6-31g method. We have investigated the self-assembly properties of these D-A conjugates though variation in the percentage of water in acetonitrile solution due to the formation of nanoaggregates. Further the contour map of the observed fluorescence intensity as a function of the fluorescence excitation and emission wavelength confirmed the formation of J-type aggregates in these cases. To have a better understanding of the type of self-assemblies formed from the TPE conjugates 4-6, we have carried out the morphological analysis through various microscopic techniques such as DLS, SEM and TEM. 70%, we observed rod shape architectures having ~ 780 nm in diameter and ~ 12 μM in length as evidenced through TEM and SEM analysis. We have made similar observations with the dodecyl conjugate 5 at ca. 70% and 50% water/acetonitrile mixtures, the aggregates formed from 4 and 5 were found to be highly crystalline and such structures were transformed to amorphous nature as the water fraction was increased to 99%. To evaluate the potential of the conjugate as bio-imaging agents, we have carried out their in vitro cytotoxicity and cellular uptake studies though MTT assay, flow cytometric and confocal laser scanning microscopic techniques. Thus nanoparticle of these conjugates which exhibited efficient emission, large stoke shift, good stability, biocompatibility and excellent cellular imaging properties can have potential applications for tracking cells as well as in cell-based therapies. In summary we have synthesized novel functional organic chromophores and have studied systematic investigation of self-assembly of these synthetic and biological building blocks under a variety of conditions. The investigation of interaction of water soluble NIR squaraine dyes with lysozyme indicates that these dyes can act as the protein labeling agents and the efficiency of inhibition of β-amyloid indicate, thereby their potential as anti-amyloid agents.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The main focus of the present study was to develop ideal low band gap D-A copolymers for photoconducting and non-linear optical applications. This chapter summarizes the overall research work done. Designed copolymers were synthesized via direct arylation or Suzuki coupling reactions. Copolymers were characterized by theoretical and experimental methods. The suitability of these copolymers in photoconducting and optical limiting devices has been investigated.The results suggest that the copolymers investigated in the present study have a good non-linear optical response and are comparable to or even better than the D-A copolymers reported in the literature and hence could be chosen as ideal candidates with potential applications for non-linear optics. The results also show that the structures of the polymers have great impact on NLO properties. Copolymers studied here exhibits good optical limiting property at 532 nm wavelength due to two-photon absorption (TPA) process. The results revealed that the two copolymers, (P(EDOT-BTSe) and P(PH-TZ)) exhibited strong two-photon absorption and superior optical power limiting properties, which are much better than that of others.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Die stereoskopische 3-D-Darstellung beruht auf der naturgetreuen Präsentation verschiedener Perspektiven für das rechte und linke Auge. Sie erlangt in der Medizin, der Architektur, im Design sowie bei Computerspielen und im Kino, zukünftig möglicherweise auch im Fernsehen, eine immer größere Bedeutung. 3-D-Displays dienen der zusätzlichen Wiedergabe der räumlichen Tiefe und lassen sich grob in die vier Gruppen Stereoskope und Head-mounted-Displays, Brillensysteme, autostereoskopische Displays sowie echte 3-D-Displays einteilen. Darunter besitzt der autostereoskopische Ansatz ohne Brillen, bei dem N≥2 Perspektiven genutzt werden, ein hohes Potenzial. Die beste Qualität in dieser Gruppe kann mit der Methode der Integral Photography, die sowohl horizontale als auch vertikale Parallaxe kodiert, erreicht werden. Allerdings ist das Verfahren sehr aufwendig und wird deshalb wenig genutzt. Den besten Kompromiss zwischen Leistung und Preis bieten präzise gefertigte Linsenrasterscheiben (LRS), die hinsichtlich Lichtausbeute und optischen Eigenschaften den bereits früher bekannten Barrieremasken überlegen sind. Insbesondere für die ergonomisch günstige Multiperspektiven-3-D-Darstellung wird eine hohe physikalische Monitorauflösung benötigt. Diese ist bei modernen TFT-Displays schon recht hoch. Eine weitere Verbesserung mit dem theoretischen Faktor drei erreicht man durch gezielte Ansteuerung der einzelnen, nebeneinander angeordneten Subpixel in den Farben Rot, Grün und Blau. Ermöglicht wird dies durch die um etwa eine Größenordnung geringere Farbauflösung des menschlichen visuellen Systems im Vergleich zur Helligkeitsauflösung. Somit gelingt die Implementierung einer Subpixel-Filterung, welche entsprechend den physiologischen Gegebenheiten mit dem in Luminanz und Chrominanz trennenden YUV-Farbmodell arbeitet. Weiterhin erweist sich eine Schrägstellung der Linsen im Verhältnis von 1:6 als günstig. Farbstörungen werden minimiert, und die Schärfe der Bilder wird durch eine weniger systematische Vergrößerung der technologisch unvermeidbaren Trennelemente zwischen den Subpixeln erhöht. Der Grad der Schrägstellung ist frei wählbar. In diesem Sinne ist die Filterung als adaptiv an den Neigungswinkel zu verstehen, obwohl dieser Wert für einen konkreten 3-D-Monitor eine Invariante darstellt. Die zu maximierende Zielgröße ist der Parameter Perspektiven-Pixel als Produkt aus Anzahl der Perspektiven N und der effektiven Auflösung pro Perspektive. Der Idealfall einer Verdreifachung wird praktisch nicht erreicht. Messungen mit Hilfe von Testbildern sowie Schrifterkennungstests lieferten einen Wert von knapp über 2. Dies ist trotzdem als eine signifikante Verbesserung der Qualität der 3-D-Darstellung anzusehen. In der Zukunft sind weitere Verbesserungen hinsichtlich der Zielgröße durch Nutzung neuer, feiner als TFT auflösender Technologien wie LCoS oder OLED zu erwarten. Eine Kombination mit der vorgeschlagenen Filtermethode wird natürlich weiterhin möglich und ggf. auch sinnvoll sein.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The present Thesis looks at the problem of protein folding using Monte Carlo and Langevin simulations, three topics in protein folding have been studied: 1) the effect of confining potential barriers, 2) the effect of a static external field and 3) the design of amino acid sequences which fold in a short time and which have a stable native state (global minimum). Regarding the first topic, we studied the confinement of a small protein of 16 amino acids known as 1NJ0 (PDB code) which has a beta-sheet structure as a native state. The confinement of proteins occurs frequently in the cell environment. Some molecules called Chaperones, present in the cytoplasm, capture the unfolded proteins in their interior and avoid the formation of aggregates and misfolded proteins. This mechanism of confinement mediated by Chaperones is not yet well understood. In the present work we considered two kinds of potential barriers which try to mimic the confinement induced by a Chaperon molecule. The first kind of potential was a purely repulsive barrier whose only effect is to create a cavity where the protein folds up correctly. The second kind of potential was a barrier which includes both attractive and repulsive effects. We performed Wang-Landau simulations to calculate the thermodynamical properties of 1NJ0. From the free energy landscape plot we found that 1NJ0 has two intermediate states in the bulk (without confinement) which are clearly separated from the native and the unfolded states. For the case of the purely repulsive barrier we found that the intermediate states get closer to each other in the free energy landscape plot and eventually they collapse into a single intermediate state. The unfolded state is more compact, compared to that in the bulk, as the size of the barrier decreases. For an attractive barrier modifications of the states (native, unfolded and intermediates) are observed depending on the degree of attraction between the protein and the walls of the barrier. The strength of the attraction is measured by the parameter $\epsilon$. A purely repulsive barrier is obtained for $\epsilon=0$ and a purely attractive barrier for $\epsilon=1$. The states are changed slightly for magnitudes of the attraction up to $\epsilon=0.4$. The disappearance of the intermediate states of 1NJ0 is already observed for $\epsilon =0.6$. A very high attractive barrier ($\epsilon \sim 1.0$) produces a completely denatured state. In the second topic of this Thesis we dealt with the interaction of a protein with an external electric field. We demonstrated by means of computer simulations, specifically by using the Wang-Landau algorithm, that the folded, unfolded, and intermediate states can be modified by means of a field. We have found that an external field can induce several modifications in the thermodynamics of these states: for relatively low magnitudes of the field ($<2.06 \times 10^8$ V/m) no major changes in the states are observed. However, for higher magnitudes than ($6.19 \times 10^8$ V/m) one observes the appearance of a new native state which exhibits a helix-like structure. In contrast, the original native state is a $\beta$-sheet structure. In the new native state all the dipoles in the backbone structure are aligned parallel to the field. The design of amino acid sequences constitutes the third topic of the present work. We have tested the Rate of Convergence criterion proposed by D. Gridnev and M. Garcia ({\it work unpublished}). We applied it to the study of off-lattice models. The Rate of Convergence criterion is used to decide if a certain sequence will fold up correctly within a relatively short time. Before the present work, the common way to decide if a certain sequence was a good/bad folder was by performing the whole dynamics until the sequence got its native state (if it existed), or by studying the curvature of the potential energy surface. There are some difficulties in the last two approaches. In the first approach, performing the complete dynamics for hundreds of sequences is a rather challenging task because of the CPU time needed. In the second approach, calculating the curvature of the potential energy surface is possible only for very smooth surfaces. The Rate of Convergence criterion seems to avoid the previous difficulties. With this criterion one does not need to perform the complete dynamics to find the good and bad sequences. Also, the criterion does not depend on the kind of force field used and therefore it can be used even for very rugged energy surfaces.