979 resultados para Activated K Channels


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular protozoan parasites Theileria parva and Theileria annulata transform leucocytes by interfering with host cell signal transduction pathways. They differ from tumour cells, however, in that the transformation process can be entirely reversed by elimination of the parasite from the host cell cytoplasm using a specific parasiticidal drug. We investigated the state of activation of Akt/PKB, a downstream target of PI3-K-generated phosphoinositides, in Theileria-transformed leucocytes. Akt/PKB is constitutively activated in a PI3-K- and parasite-dependent manner, as judged by the specific phosphorylation of key residues, in vitro kinase assays and its cellular distribution. In previous work, we demonstrated that the parasite induces constitutive activation of the transcription factor NF-kappaB, providing protection against spontaneous apoptosis that accompanies transformation. In a number of other systems, a link has been established between the PI3-K-Akt/PKB pathway and NF-kappaB activation, resulting in protection against apoptosis. In Theileria-transformed leucocytes, activation of the NF-kappaB and the PI3-K-Akt/PKB pathways are not directly linked. The PI3-K-Akt/PKB pathway does not contribute to the persistent induction of IkappaBalpha phosphorylation, NF-kappaB DNA-binding or transcriptional activity. We show that the two pathways are downregulated with different kinetics when the parasite is eliminated from the host cell cytoplasm and that NF-kappaB-dependent protection against apoptosis is not dependent on a functional PI3-K-Akt/PKB pathway. We also demonstrate that Akt/PKB contributes, at least in part, to the proliferation of Theileria-transformed T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation â the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group â to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GGâd) if farnesylation is inhibited but are preferentially farnesylated. Small molecule inhibitors of farnesyltransferase (FTIs) have been developed as a means to alter Ras signaling. Our initial studies with FTIs in malignant and non-malignant cells revealed FTI-induced cell cycle arrest, reduced proliferation, and increased Ras signaling. These findings led us to the hypothesis that FTI induced increased GGâd Ras. We further hypothesized that the specific effects of FTI on cell cycle and growth result from increased signal strength of GGâd Ras. Our results did show that increase in GGâd K-Ras in particular results in reduced cell viability and cell cycle arrest. Genetically engineered constructs capable of only one type of prenylation confirmed that GGâd K-Ras recapitulated the effect of FTI in 293T cells. In tumor cell lines ERK and p38 MAPK pathways were both strongly activated in response to FTI, indicating the increased activity of GGâd K-Ras results in antiproliferative signals specifically through these pathways. These results collectively indicate FTI increases active GGâd K-Ras which activates ERK and p38 MAPKs to reduced cell viability and induce cell cycle arrest in malignant cells. This is the first report that identifies increased activity of GGâd K-Ras contributes to antineoplastic effects from FTI by increasing the activity of downstream MAPKs. Our observations suggest increased GGâd K-Ras activity, rather than inhibition of farnesylated Ras, is a major source of the cytostatic and cytotoxic effects of FTI. Our data may allow for determination of which patients would benefit from FTI by excluding tumors or diseases which have strong K-Ras signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of protein degradation, and AMPK activity are increased during nutrient deprivation. Pharmacologic and genetic activation of AMPK is sufficient for the induction of MAFbx/Atrogin-1 and MuRF1 in cardiomyocytes and in the heart in vivo. Comprehensive experiments demonstrate that the molecular mechanism by which AMPK regulates MuRF1 expression is through the transcription factor myocyte enhancer factor 2 (MEF2), which is involved in stress response and cardiomyocyte remodeling. MuRF1 is required for AMPK-mediated protein degradation through the UPS in cardiomyocytes. Consequently, the absence of MuRF1 during chronic fasting preserves cardiac function, possibly by limiting degradation of critical metabolic enzymes. Furthermore, during cardiac hypertrophy, chronic activation of AMPK also leads to cardiac dysfunction, possibly through enhanced protein degradation and metabolic dysregulation. Collectively, my findings demonstrate that AMPK regulates expression of ubiquitin ligases which are required for UPS-mediated protein degradation in the heart. Based on these results, I propose that specific metabolic signals may serve as modulators of intracellular protein degradation in the heart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) often results in disruption of the blood brain barrier (BBB), which is an integral component to maintaining the central nervous system homeostasis. Recently cytosolic calcium levels ([Ca2+]i), observed to elevate following TBI, have been shown to influence endothelial barrier integrity. However, the mechanism by which TBI-induced calcium signaling alters the endothelial barrier remains unknown. In the present study, an in vitro BBB model was utilized to address this issue. Exposure of cells to biaxial mechanical stretch, in the range expected for TBI, resulted in a rapid cytosolic calcium increase. Modulation of intracellular and extracellular Ca2+ reservoirs indicated that Ca2+ influx is the major contributor for the [Ca2+]i elevation. Application of pharmacological inhibitors was used to identify the calcium-permeable channels involved in the stretch-induced Ca2+ influx. Antagonist of transient receptor potential (TRP) channel subfamilies, TRPC and TRPP, demonstrated a reduction of the stretch-induced Ca2+ influx. RNA silencing directed at individual TRP channel subtypes revealed that TRPC1 and TRPP2 largely mediate the stretch-induced Ca2+ response. In addition, we found that nitric oxide (NO) levels increased as a result of mechanical stretch, and that inhibition of TRPC1 and TRPP2 abolished the elevated NO synthesis. Further, as myosin light chain (MLC) phosphorylation and actin cytoskeleton rearrangement are correlated with endothelial barrier disruption, we investigated the effect mechanical stretch had on the myosin-actin cytoskeleton. We found that phosphorylated MLC was increased significantly by 10 minutes post-stretch, and that inhibition of TRP channel activity or NO synthesis both abolished this effect. In addition, actin stress fibers formation significantly increased 2 minutes post-stretch, and was abolished by treatment with TRP channel inhibitors. These results suggest that, in brain endothelial cells, TRPC1 and TRPP2 are activated by TBI-mechanical stress and initiate actin-myosin contraction, which may lead to disruption of the BBB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term potentiation (LTP) is a rapidly induced and long lasting increase in synaptic strength and is the leading cellular model for learning and memory in the mammalian brain. LTP was first identified in the hippocampus, a structure implicated in memory formation. LTP induction is dependent on postsynaptic Ca2+ increases mediated by N-methyl-D-aspartate (NMDA) receptors. Activation of other postsynaptic routes of Ca2+ entry, such as voltage-dependent Ca2+ channels (VDCCs) have subsequently been shown to induce a long-lasting increase in synaptic strength. However, it is unknown if VDCC-induced LTP utilized similar cellular mechanisms as the classical NMDA receptor-dependent LTP and if these two forms of LTP display similar properties. This dissertation determines the similarities and differences in VDCC and NMDA receptor-dependent LTP in area CA1 of hippocampal slices and demonstrates that VDCCs and NMDA receptors activate similar cellular mechanisms, such as protein kinases, to induce LTP. However, VDCC and NMDA receptor activated LTP induction mechanisms are compartmentalized in the postsynaptic neuron, such that they do not interact. Consistent with activation properties of NMDA receptors and VDCCs, NMDA receptor and VDCC-dependent LTP have different induction properties. In contrast to NMDA-dependent LTP, VDCC-induced potentiation does not require evoked presynaptic stimulation or display input specificity. These results indicate that there are two different routes of postsynaptic Ca2+ which can induce LTP and the compartmentation of VDCCs and NMDA receptors and/or their resulting Ca2+ increases may account for the distinction between these LTP induction mechanisms.^ One of the molecular targets for postsynaptic Ca2+ that is required for the induction of LTP is protein kinases. Evidence for the role of protein kinase activity in LTP expression is either correlational or controversial. We have utilized a broad range and potent inhibitors of protein kinases to systematically examine the temporal requirement for protein kinases in the induction and expression of LTP. Our results indicate that there is a critical period of persistent protein kinase activity required for LTP induction activated by tetanic stimulation and extending until 20 min after HFS. In addition, our results suggest that protein kinase activity during and immediately after HFS is not sufficient for LTP induction. These results provide evidence for persistent and/or Ca2+ independent protein kinase activity involvement in LTP induction. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p21-activated kinase, Shk1, is an essential serine/threonine kinase required for normal cell polarity, proper mating response, and hyperosmotic stress response, in the fission yeast, Schizosaccharomyces pombe. This study has established a novel role for Shk1 as a microtubule regulator in fission yeast and, in addition, characterized a potential biological substrate of Shk1. Cells defective in Shk1 function were found to exhibit malformed interphase and mitotic microtubules, are hypersensitive to the microtubule disrupting drug thiabendazole (TBZ), and are cold sensitive for growth. Microtubule disruption by TBZ results in a significant reduction of Shk1 kinase activity, which is restored after cells are released from the drug, thus providing a correlation between Shk1 kinase activity and active microtubule polymerization. Consistent with a role for Shk1 as a microtubule regulator, GFP-Shk1 fusion proteins localize to interphase microtubules and mitotic microtubule spindles. Furthermore, loss of Tea1, a presumptive microtubule regulator in fission yeast, exacerbates the growth and microtubule defects of cells deficient in Shk1 function, and results in illicit Shk1 localization. Moreover, loss of the Cdc2 inhibitory kinase Wee1, which has been implicated as a mediator of the Shk1 pathway, leads to significant microtubule defects. Intriguingly, Wee1 protein levels are markedly reduced both by partial loss of Shk1 function and by treatment with TBZ. These results suggest that Shk1 is required for proper regulation of microtubule dynamics in fission yeast and may interact with Tea1 and Wee1 in this regulatory process. ^ To further understand Shk1 function in fission yeast, a yeast two-hybrid screen for proteins that interact with the Shk1 catalytic domain was performed. This screen led to the identification of a novel protein, Skb10 (for S&barbelow;hk1 k&barbelow;inase b&barbelow;inding protein 10). Coprecipitation experiments demonstrated that Skb10 associates with Shk1 in S. pombe cells. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La privación dietaria de sodio estimula la secreción de aldosterona. En el colon de rata, la aldosterona elevada aumenta la absorción de Na+, pero además torna electrogénico el mecanismo de absorción (normalmente electroneutro). Dicho transporte electrogénico puede suprimirse mediante el bloqueo de los canales epiteliales de Na+ en la membrana apical o la inhibición de la Na, KATPasa de la membrana basolateral. La absorción electrogénica de sodio está estrechamente acoplada al metabolismo aerobio, pero se desconoce si el bloqueo de los canales de Na+ reduce el consumo de oxígeno en igual medida que la inhibición de la Na, K-ATPasa. Se obtuvieron preparados de mucosa aislada del colon distal de ratas alimentadas con una dieta hiposódica por 10 días. Se determinó simultáneamente la corriente de cortocircuito y el consumo de oxígeno en condición basal y luego del bloqueo de canales de Na+ con amilorida (n=12) o de la Na, K-ATPasa con uabaína (n=12). Ambos tratamientos redujeron la corriente de cortocircuito en igual medida (>80%), pero la reducción en el consumo de oxígeno fue mayor con uabaína que con amilorida (p<0.03). Esto se debe probablemente a que la Na, KATPasa cumple otras funciones, además del transporte transepitelial de Na+, que son suprimidas por la uabaína pero no por la amilorida.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies suggested that modification of the membrane contact site of vitamin K-dependent proteins may enhance the membrane affinity and function of members of this protein family. The properties of a factor VII mutant, factor VII-Q10E32, relative to wild-type factor VII (VII, containing P10K32), have been compared. Membrane affinity of VII-Q10E32 was about 20-fold higher than that of wild-type factor VII. The rate of autoactivation VII-Q10E32 with soluble tissue factor was 100-fold faster than wild-type VII and its rate of activation by factor Xa was 30 times greater than that of wild-type factor VII. When combined with soluble tissue factor and phospholipid, activated factor VII-Q10E32 displayed increased activation of factor X. Its coagulant activity was enhanced in all types of plasma and with all sources of tissue factor tested. This difference in activity (maximum 50-fold) was greatest when coagulation conditions were minimal, such as limiting levels of tissue factor and/or phospholipid. Because of its enhanced activity, factor VII-Q10E32 and its derivatives may provide important reagents for research and may be more effective in treatment of bleeding and/or clotting disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of PAR2-activating PAR2-activating peptides, SLIGRL (SL)-NH2, and trans-cinnamoyl-LIGRLO (tc)-NH2 were compared with the action of trypsin, thrombin, and the PAR1 selective-activating peptide: Ala-parafluoroPhe-Arg-cyclohexylAla-Citrulline-Tyr (Cit)-NH2 for stimulating intestinal ion transport. These agonists were added to the serosa of stripped rat jejunum segments mounted in Ussing chambers, and short circuit current (Isc) was used to monitor active ion transport. The relative potencies of these agonists also were evaluated in two bioassays specific for the activation of rat PAR2: a cloned rat PAR2 cell calcium-signaling assay (PAR2-KNRK cells) and an aorta ring relaxation (AR) assay. In the Isc assay, all agonists, except thrombin, induced an Isc increase. The SL-NH2-induced Isc changes were blocked by indomethacin but not by tetrodotoxin. The relative potencies of the agonists in the Isc assay (trypsinâ«SL-NH2>tc-NH2>Cit-NH2) were strikingly different from their relative potencies in the cloned PAR2-KNRK cell calcium assay (trypsinâ«>tc-NH2 â SL-NH2â«>Cit-NH2) and in the AR assay (trypsinâ«>tc-NH2 â SL-NH2). Furthermore, all agonists were maximally active in the PAR2-KNRK cell and AR assays at concentrations that were one (PAR2 -activating peptides) or two (trypsin) orders of magnitude lower than those required to activate intestinal transport. Based on the distinct potency profile for these agonists and the considerable differences in the concentration ranges required to induce an Isc effect in the intestinal assay compared with the PAR2-KNRK and AR assays, we conclude that a proteinase-activated receptor, pharmacologically distinct from PAR2 and PAR1, is present in rat jejunum and regulates intestinal transport via a prostanoid-mediated mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been demonstrated that both salicylic acid and fungal elicitors activate a 48-kDa mitogen-activated protein kinase termed salicylic acid-induced protein kinase (SIPK) in tobacco suspension cells. Here, we show that infiltration of these agents into tobacco leaves also activates SIPK. Of particular interest, infiltration of water alone activated a kinase of the same size, possibly because of wounding and/or osmotic stresses. The kinetics of kinase activation, however, differ for these different treatments. Various mechanical stresses, including cutting and wounding by abrasion, also activated a 48-kDa kinase. By using an immune-complex kinase assay with antibodies specific for SIPK or wounding-induced protein kinase, we demonstrate that this wounding-activated 48-kDa kinase is SIPK, rather than wounding-induced protein kinase, as reported [Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H. & Ohashi, Y. (1995) Science 270, 1988â1992]. Activation of SIPK after wounding was associated with tyrosine phosphorylation but not with increases in SIPK mRNA or protein levels. Thus, the same mitogen-activated protein kinase, SIPK, appears to facilitate signaling for two distinct pathways that lead to disease resistance responses and wounding responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The state-to-state transfer of rotational and vibrational energy has been studied for S1 glyoxal (CHOCHO) in collisions with D2, N2, CO and C2H4 using crossed molecular beams. A laser is used to pump glyoxal seeded in He to its S1 zero point level with zero angular momentum about its top axis (Kâ² = 0). The inelastic scattering to each of at least 26 S1 glyoxal rotational and rovibrational levels is monitored by dispersed S1âS0 fluorescence. Various collision partners are chosen to investigate the relative influences of reduced mass and the collision pair interaction potential on the competition among the energy transfer channels. When the data are combined with that obtained previously from other collision partners whose masses range from 2 to 84 amu, it is seen that the channel competition is controlled primarily by the kinematics of the collisional interaction. Variations in the intermolecular potential play strictly a secondary role.