950 resultados para Act on Taxation Procedure
Resumo:
Glycosylphosphatidylinositol (GPI) lipids of Trypanosoma brucei undergo lipid remodelling, whereby longer fatty acids on the glycerol are replaced by myristate (C14:0). A similar process occurs on GPI proteins of Saccharomyces cerevisiae where Per1p first deacylates, Gup1p subsequently reacylates the anchor lipid, thus replacing a shorter fatty acid by C26:0. Heterologous expression of the GUP1 homologue of T. brucei in gup1Delta yeast cells partially normalizes the gup1Delta phenotype and restores the transfer of labelled fatty acids from Coenzyme A to lyso-GPI proteins in a newly developed microsomal assay. In this assay, the Gup1p from T. brucei (tbGup1p) strongly prefers C14:0 and C12:0 over C16:0 and C18:0, whereas yeast Gup1p strongly prefers C16:0 and C18:0. This acyl specificity of tbGup1p closely matches the reported specificity of the reacylation of free lyso-GPI lipids in microsomes of T. brucei. Depletion of tbGup1p in trypanosomes by RNAi drastically reduces the rate of myristate incorporation into the sn-2 position of lyso-GPI lipids. Thus, tbGup1p is involved in the addition of myristate to sn-2 during GPI remodelling in T. brucei and can account for the fatty acid specificity of this process. tbGup1p can act on GPI proteins as well as on GPI lipids.
Resumo:
Since the discovery that Delta 9-tetrahydrocannabinol and related cannabinoids from Cannabis sativa L. act on specific physiological receptors in the human body and the subsequent elucidation of the mammalian endogenous cannabinoid system, no other natural product class has been reported to mimic the effects of cannabinoids. We recently found that N-alkyl amides from purple coneflower (Echinacea spp.) constitute a new class of cannabinomimetics, which specifically engage and activate the cannabinoid type-2 (CB2) receptors. Cannabinoid type-1 (CB1) and CB2 receptors belong to the family of G protein-coupled receptors and are the primary targets of the endogenous cannabinoids N-arachidonoyl ethanolamine and 2-arachidonoyl glyerol. CB2 receptors are believed to play an important role in distinct pathophysiological processes, including metabolic dysregulation, inflammation, pain, and bone loss. CB2 receptors have, therefore, become of interest as new targets in drug discovery. This review focuses on N-alkyl amide secondary metabolites from plants and underscores that this group of compounds may provide novel lead structures for the development of CB2-directed drugs.
Resumo:
Spontaneous confabulation is a rare memory disorder resulting from orbitofrontal damage or disconnection. Patients act on the basis of memories that do not pertain to the current situation, and are disoriented. No medical treatment is known. Recent studies suggest that subcortical dopaminergic structures are involved in the selection of currently relevant memories. We present a patient who regained the ability to adapt thought and behavior to ongoing reality when treated with risperidone, a dopamine antagonist.
Resumo:
Expression of the extracellular matrix (ECM) protein tenascin-C is induced in fibroblasts by growth factors as well as by tensile strain. Mechanical stress can act on gene regulation directly, or indirectly via the paracrine release of soluble factors by the stimulated cells. To distinguish between these possibilities for tenascin-C, we asked whether cyclic tensile strain and soluble factors, respectively, induced its mRNA via related or separate mechanisms. When cyclic strain was applied to chick embryo fibroblasts cultured on silicone membranes, tenascin-C mRNA and protein levels were increased twofold within 6 h compared to the resting control. Medium conditioned by strained cells did not stimulate tenascin-C mRNA in resting cells. Tenascin-C mRNA in resting cells was increased by serum; however, cyclic strain still caused an additional induction. Likewise, the effect of TGF-beta1 or PDGF-BB was additive to that of cyclic strain, whereas IL-4 or H2O2 (a reactive oxygen species, ROS) did not change tenascin-C mRNA levels. Antagonists for distinct mitogen-activated protein kinases (MAPK) inhibited tenascin-C induction by TGF-beta1 and PDGF-BB, but not by cyclic strain. Conversely, a specific inhibitor of Rho-dependent kinase strongly attenuated the response of tenascin-C mRNA to cyclic strain, but had limited effect on induction by growth factors. The data suggest that regulation of tenascin-C in fibroblasts by cyclic strain occurs independently from soluble mediators and MAPK pathways; however, it requires Rho/ROCK signaling.
Resumo:
Background: Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTH-rP) are two potent hypercalcemic hormones that act on the same targets. Autonomous secretion of the former is involved in primary hyperparathyroidism (PHPT), whereas the latter is responsible for humoral hypercalcemia of malignancy (HHM). Methods: From 250 consecutive, hypercalcemic serum samples sent to our laboratory for assessment of intact PTH, we were able to obtain clinical information, as well as an additional plasma sample for PTH-rP measurement, in 134 patients. At the time of sampling, patients could be classified into seven groups: cancer without known bone metastases (CaNoMeta, n=36), cancer with bone metastases (CaMeta, n=9), no evidence of cancer (noEvCa, n=71), sarcoidosis (Sarc, n=3), end-stage renal disease (ESRD, n=12), vitamin D overdose (VIT-D, n=2), and hyperthyroidism (Thyr, n=1). Results: In the CaNoMeta group, 29/36 patients had elevated PTH-rP levels, 9/36 patients had inappropriately elevated PTH levels, and 5/36 had elevated levels of both hormones. In the CaMeta group, three of the nine patients had inappropriately elevated PTH levels, two of them with concomitantly elevated PTH-rP levels. In the NoEvCa group, 63/71 patients had an inappropriate elevation of PTH levels and were diagnosed as having PHPT. Four of the 71 patients had elevated levels of both PTH and PTH-rP; three of them were in poor health and died within a short period of time. All of the ESRD patients had very high PTH and normal PTH-rP levels, except for one woman with high PTH-rP and undetectable PTH levels; she died from what later turned out to be a recurrent bladder carcinoma. In the Sarc, Vit-D, and Thyr groups, both PTH and PTH-rP levels were normal. Conclusions: (1) Elevated PTH-rP levels are a common finding in cancer patients without bone metastases. Intact PTH, however, should always be measured in hypercalcemic patients with malignancy because concurrent primary hyperparathyroidism is not rare. (2) Primary hyperparathyroidism accounts for hypercalcemia in 90% of patients without evidence of cancer whose PTH-rP levels may also be found to be elevated in a few cases, even some with surgically demonstrated parathyroid adenoma.
Resumo:
Heritable variation in plant phenotypes, and thus potential for evolutionary change, can in principle not only be caused by variation in DNA sequence, but also by underlying epigenetic variation. However, the potential scope of such phenotypic effects and their evolutionary significance are largely unexplored. Here, we conducted a glasshouse experiment in which we tested the response of a large number of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana – lines that are nearly isogenic but highly variable at the level of DNA methylation – to drought and increased nutrient conditions. We found significant heritable variation among epiRILs both in the means of several ecologically important plant traits and in their plasticities to drought and nutrients. Significant selection gradients, that is, fitness correlations, of several mean traits and plasticities suggest that selection could act on this epigenetically based phenotypic variation. Our study provides evidence that variation in DNA methylation can cause substantial heritable variation of ecologically important plant traits, including root allocation, drought tolerance and nutrient plasticity, and that rapid evolution based on epigenetic variation alone should thus be possible.
Resumo:
Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.
Resumo:
BACKGROUND Complete resection of enhancing tumor as assessed by early (<72 hours) postoperative MRI is regarded as the optimal result in glioblastoma surgery. As yet, there is no consensus on standard procedure if post-operative imaging reveals unintended tumor remnants. OBJECTIVE The current study evaluated the feasibility and safety of an early re-do surgery aimed at completing resections with the aid of 5-ALA fluorescence and neuronavigation after detection of enhancing tumor remnants on post-operative MRI. METHODS From October 2008 to October 2012 a single center institutional protocol offered a second surgery within one week to patients with unintentional incomplete glioblastoma resection. We report on the feasibility of the use 5-ALA fluorescence guidance, the extent of resection (EOR) rates and complications of early re-do surgery. RESULTS Nine of 151 patients (6%) with glioblastoma resections had an unintentional tumor remnant with a volume >0.175 cm(3). 5-ALA guided re-do surgery completed the resection (CRET) in all patients without causing neurological deficits, infections or other complications. Patients who underwent a re-do surgery remained hospitalized between surgeries, resulting in a mean length of hospital stay of 11 days (range 7-15), compared to 9 days for single surgery (range 3-23; p=0.147). CONCLUSION Our early re-do protocol led to complete resection of all enhancing tumor in all cases without any new neurological deficits and thus provides a similar oncological result as intraoperative MRI (iMRI). The repeated use of 5-ALA induced fluorescence, used for identification of small remnants, remains highly sensitive and specific in the setting of re-do surgery. Early re-do surgery is a feasible and safe strategy to complete unintended subtotal resections.
Resumo:
Both inter- and intrasexual selection have been implicated in the origin and maintenance of species-rich taxa with diverse sexual traits. Simultaneous disruptive selection by female mate choice and male-male competition can, in theory, lead to speciation without geographical isolation if both act on the same male trait. Female mate choice can generate discontinuities in gene flow, while male-male competition can generate negative frequency-dependent selection stabilizing the male trait polymorphism. Speciation may be facilitated when mating preference and/or aggression bias are physically linked to the trait they operate on. We tested for genetic associations among female mating preference, male aggression bias and male coloration in the Lake Victoria cichlid Pundamilia. We crossed females from a phenotypically variable population with males from both extreme ends of the phenotype distribution in the same population (blue or red). Male offspring of a red sire were significantly redder than males of a blue sire, indicating that intra-population variation in male coloration is heritable. We tested mating preferences of female offspring and aggression biases of male offspring using binary choice tests. There was no evidence for associations at the family level between female mating preferences and coloration of sires, but dam identity had a significant effect on female mate preference. Sons of the red sire directed significantly more aggression to red than blue males, whereas sons of the blue sire did not show any bias. There was a positive correlation among individuals between male aggression bias and body coloration, possibly due to pleiotropy or physical linkage, which could facilitate the maintenance of color polymorphism.
Resumo:
A new Swiss federal licencing examination for human medicine (FLE) was developed and released in 2011. This paper describes the process from concept design to the first results obtained on implementation of the new examination. The development process was based on the Federal Act on University Medical Professions and involved all national stakeholders in this venture. During this process questions relating to the assessment aims, the assessment formats, the assessment dimensions, the examination content and necessary trade-offs were clarified. The aims were to create a feasible, fair, valid and psychometrically sound examination in accordance with international standards, thereby indicating the expected knowledge and skills level at the end of undergraduate medical education. Finally, a centrally managed and locally administered examination comprising a written multiple-choice element and a practical “clinical skills” test in the objective structured clinical examination (OSCE) format was developed. The first two administrations of the new FLE show that the examination concept could be implemented as intended. The anticipated psychometric indices were achieved and the results support the validity of the examination. Possible changes to the format or content in the future are discussed.
Resumo:
Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of prokaryotic (H. volcanii, S. aureus) and unicellular eukaryotic model organisms. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs. For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. In the archaeon H. volcanii a tRNA-derived fragment was identified to target the small ribosomal subunit upon alkaline stress in vitro and in vivo. As a consequence of ribosome binding, this tRNA-fragment reduces protein synthesis by interfering with the peptidyl transferase activity. Our data reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory sRNAs.
Resumo:
Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of organisms from all three domains of life. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs.1,2 For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. We show that some of these ribosome-bound small ncRNAs are capable of fine tuning protein synthesis in vitro and in vivo. Our data therefore reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life and suggest the existence of a so far largely unexplored mechanism of translation regulation.
Resumo:
Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. To investigate whether such a class of regulatory ncRNAs does exist we performed genomic screens for small ribosome-associated RNAs in various model organisms of all three domains [1,2]. Here we focus on the functional characterisation of an 18 nucleotide long ncRNA candidate derived from an open reading frame (ORF) of an annotated S. cerevisiae gene, which encodes a tRNA methyltransferase. Yeast cells lacking this tRNA methyltransferase showed clear growth defects in high salt containing media. Genetic analysis showed that the absence of the mRNA-derived ncRNA rather than the absence of the tRNA methyltransferase activity is responsible for the observed phenotype. Since we performed a screen for small ribosome-associated RNAs we examined the regulatory potential of the synthetic 18mer during translation in vitro and in vivo. Metabolic labeling experiments in the presence of the synthetic 18mer RNA revealed an inhibitory potential on the global protein biosynthesis rate. In vitro translation and northern blot analysis further strengthen the hypothesis, that this RNA is a ribosome-associated regulatory ncRNA. Our studies in pro- and eukaryotic model organisms reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory ncRNAs.
Resumo:
BACKGROUND The main goal of this study was to assess frequency, clinical correlates, and independent predictors of fatigue in a homogeneous cohort of well-defined glioblastoma patients at baseline prior to combined radio-chemotherapy. METHODS We prospectively included 65 glioblastoma patients at postsurgical baseline and assessed fatigue, sleepiness, mean bedtimes, mood disturbances, and clinical characteristics such as clinical performance status, presenting symptomatology, details on neurosurgical procedure, and tumor location and diameter as well as pharmacological treatment including antiepileptic drugs, antidepressants, and use of corticosteroids. Data on fatigue and sleepiness were measured with the Fatigue Severity Scale and the Epworth Sleepiness Scale, respectively, and compared with 130 age- and sex-matched healthy controls. RESULTS We observed a significant correlation between fatigue and sleepiness scores in both patients (r = 0.26; P = .04) and controls (r = 0.36; P < .001). Only fatigue appeared to be more common in glioblastoma patients than in healthy controls (48% vs 11%; P < .001) but not the frequency of sleepiness (22% vs 19%; P = .43). Female sex was associated with increased fatigue frequency among glioblastoma patients but not among control participants. Multiple linear regression analyses identified depression, left-sided tumor location, and female sex as strongest associates of baseline fatigue severity. CONCLUSIONS Our findings indicate that glioblastoma patients are frequently affected by fatigue at baseline, suggesting that factors other than those related to radio- or chemotherapy have significant impact, particularly depression and tumor localization.
Resumo:
Small non-protein-coding RNAs (ncRNAs) are key players in controlling gene expression. The advantage of ncRNA regulators is their almost immediate availability since they act on the RNA level. The list of validated ncRNAs regulating translation, such as micro RNAs, is growing steadily, however, they almost exclusively target the mRNA rather than the ribosome. This is unexpected given the central position the ribosome plays. Here we show that an mRNA-derived 18 nucleotide long ncRNA is capable of down-regulating translation in Saccharomyces cerevisiae by targeting the ribosome. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence as the translation regulator. Our data reveal the ribosome as a target for a small regulatory ncRNA and demonstrate the existence of a yet unknown mechanism of translation regulation.