945 resultados para Acquired immune deficiency syndrome


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is characterized by impaired physical and mental development. Two complementation groups, CSA and CSB, have been identified. Here we report that the CSB gene product enhances elongation by RNA polymerase II. CSB stimulated the rate of elongation on an undamaged template by a factor of about 3. A thymine-thymine cyclobutane dimer located in the template strand is known to be a strong block to transcription. Addition of CSB to the blocked polymerase resulted in addition of one nucleotide to the nascent transcript. Finally, addition of transcription factor IIS is known to cause polymerase blocked at a thymine-thymine cyclobutane dimer to digest its nascent transcript, and CSB counteracted this transcript shortening action of transcription factor IIS. Thus a deficiency in transcription elongation may contribute to the CS phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 3-yr-old female patient exhibited interleukin 12 (IL-12) deficiency that was associated with recurrent episodes of pneumococcal pneumonia with sepsis and other infections in the absence of fevers. The patient’s peripheral blood mononuclear cells (PBMCs) exhibited normal proliferative responses to antigens. Immune responses, including in vivo production of antibodies to diphtheria, tetanus, or pneumococcal antigens, were normal. Ig levels and B cell and T cell phenotypes were also normal. In contrast, IL-12 p70 heterodimer production was undetectable by using supernatants of the patient’s stimulated PBMCs when compared with control cells treated similarly. Although present, interferon γ (IFN-γ) was reduced. The addition of recombinant IFN-γ to control cells enhanced the production of IL-12 by up to sixfold. By contrast, IL-12 was undetectable in supernatants of the patient’s cells in the presence of recombinant IFN-γ. IL-12 p40 subunit mRNA by using the patient’s PBMCs after stimulation with Staphylococcus aureus Cowan strain 1 or lipopolysaccharide was also undetectable by reverse transcription–PCR when compared with control cells. Production of IL-2, IL-6, tumor necrosis factor α, or IFN-γ of the patient’s PBMCs after appropriate stimulation was observed. This patient has either a defect in Staphylococcus aureus Cowan strain 1-lipopolysaccharide- or staphylococcal enterotoxin A-induced signaling pathways for the activation of IL-12 p40 gene expression, or an abnormality in the IL-12 p40 gene itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-linked lymphoproliferative syndrome (XLP) is an inherited immunodeficiency characterized by increased susceptibility to Epstein–Barr virus (EBV). In affected males, primary EBV infection leads to the uncontrolled proliferation of virus-containing B cells and reactive cytotoxic T cells, often culminating in the development of high-grade lymphoma. The XLP gene has been mapped to chromosome band Xq25 through linkage analysis and the discovery of patients harboring large constitutional genomic deletions. We describe here the presence of small deletions and intragenic mutations that specifically disrupt a gene named DSHP in 6 of 10 unrelated patients with XLP. This gene encodes a predicted protein of 128 amino acids composing a single SH2 domain with extensive homology to the SH2 domain of SHIP, an inositol polyphosphate 5-phosphatase that functions as a negative regulator of lymphocyte activation. DSHP is expressed in transformed T cell lines and is induced following in vitro activation of peripheral blood T lymphocytes. Expression of DSHP is restricted in vivo to lymphoid tissues, and RNA in situ hybridization demonstrates DSHP expression in activated T and B cell regions of reactive lymph nodes and in both T and B cell neoplasms. These observations confirm the identity of DSHP as the gene responsible for XLP, and suggest a role in the regulation of lymphocyte activation and proliferation. Induction of DSHP may sustain the immune response by interfering with SHIP-mediated inhibition of lymphocyte activation, while its inactivation in XLP patients results in a selective immunodeficiency to EBV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bloom syndrome (BS) is a rare autosomal recessive disorder characterized by growth deficiency, immunodeficiency, genomic instability, and the early development of cancers of many types. BLM, the protein encoded by BLM, the gene mutated in BS, is localized in nuclear foci and absent from BS cells. BLM encodes a DNA helicase, and proteins from three missense alleles lack displacement activity. BLM transfected into BS cells reduces the frequency of sister chromatid exchanges and restores BLM in the nucleus. Missense alleles fail to reduce the sister chromatid exchanges in transfected BS cells or restore the normal nuclear pattern. BLM complements a phenotype of a Saccharomyces cerevisiae sgs1 top3 strain, and the missense alleles do not. This work demonstrates the importance of the enzymatic activity of BLM for its function and nuclear localization pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At least 11 complementation groups (CGs) have been identified for the peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome, for which seven pathogenic genes have been elucidated. We have isolated a human PEX19 cDNA (HsPEX19) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary cell line, ZP119, defective in import of both matrix and membrane proteins. This cDNA encodes a hydrophilic protein (Pex19p) comprising 299 amino acids, with a prenylation motif, CAAX box, at the C terminus. Farnesylated Pex19p is partly, if not all, anchored in the peroxisomal membrane, exposing its N-terminal part to the cytosol. A stable transformant of ZP119 with HsPEX19 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX19 expression also restored peroxisomal protein import in fibroblasts from a patient (PBDJ-01) with Zellweger syndrome of CG-J. This patient (PBDJ-01) possessed a homozygous, inactivating mutation: a 1-base insertion, A764, in a codon for Met255, resulted in a frameshift, inducing a 24-aa sequence entirely distinct from normal Pex19p. These results demonstrate that PEX19 is the causative gene for CG-J PBD and suggest that the C-terminal part, including the CAAX homology box, is required for the biological function of Pex19p. Moreover, Pex19p is apparently involved at the initial stage in peroxisome membrane assembly, before the import of matrix protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Norepinephrine, released from sympathetic neurons, and epinephrine, released from the adrenal medulla, participate in a number of physiological processes including those that facilitate adaptation to stressful conditions. The thymus, spleen, and lymph nodes are richly innervated by the sympathetic nervous system, and catecholamines are thought to modulate the immune response. However, the importance of this modulatory role in vivo remains uncertain. We addressed this question genetically by using mice that lack dopamine β-hydroxylase (dbh−/− mice). dbh−/− mice cannot produce norepinephrine or epinephrine, but produce dopamine instead. When housed in specific pathogen-free conditions, dbh−/− mice had normal numbers of blood leukocytes, and normal T and B cell development and in vitro function. However, when challenged in vivo by infection with the intracellular pathogens Listeria monocytogenes or Mycobacterium tuberculosis, dbh−/− mice were more susceptible to infection, exhibited extreme thymic involution, and had impaired T cell function, including Th1 cytokine production. When immunized with trinitrophenyl-keyhole limpet hemocyanin, dbh−/− mice produced less Th1 cytokine-dependent-IgG2a antitrinitrophenyl antibody. These results indicate that physiological catecholamine production is not required for normal development of the immune system, but plays an important role in the modulation of T cell-mediated immunity to infection and immunization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor necrosis factor-related, activation-induced cytokine (TRANCE), a tumor necrosis factor family member, mediates survival of dendritic cells in the immune system and is required for osteoclast differentiation and activation in the skeleton. We report the skeletal phenotype of TRANCE-deficient mice and its rescue by the TRANCE transgene specifically expressed in lymphocytes. TRANCE-deficient mice showed severe osteopetrosis, with no osteoclasts, marrow spaces, or tooth eruption, and exhibited profound growth retardation at several skeletal sites, including the limbs, skull, and vertebrae. These mice had marked chondrodysplasia, with thick, irregular growth plates and a relative increase in hypertrophic chondrocytes. Transgenic overexpression of TRANCE in lymphocytes of TRANCE-deficient mice rescued osteoclast development in two locations in growing long bones: excavation of marrow cavities permitting hematopoiesis in the marrow spaces, and remodeling of osteopetrotic woven bone in the shafts of long bones into histologically normal lamellar bone. However, osteoclasts in these mice failed to appear at the chondroosseous junction and the metaphyseal periosteum of long bones, nor were they present in tooth eruption pathways. These defects resulted in sclerotic metaphyses with persistence of club-shaped long bones and unerupted teeth, and the growth plate defects were largely unimproved by the TRANCE transgene. Thus, TRANCE-mediated regulation of the skeleton is complex, and impacts chondrocyte differentiation and osteoclast formation in a manner that likely requires local delivery of TRANCE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors report their knowledge about an uncommon case of isolated vasculitis, restricted to the left sylvian artery during an auto-immune Guillain-Barrè syndrome (GBS), sustained by cytomegalovirus (CMV). An acute cardiopulmonary failure requiring a ventilator and vasopressor support manifested, notwithstanding plasma exchanging and immune-modulating therapy. An IgM-enriched formula administration coincided with a rapid amelioration of GBS and vasculitis to a complete recovery the next month after her discharge to a rehabilitation centre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Choline acetyltransferase (ChAT; EC 2.3.1.6) catalyzes the reversible synthesis of acetylcholine (ACh) from acetyl CoA and choline at cholinergic synapses. Mutations in genes encoding ChAT affecting motility exist in Caenorhabditis elegans and Drosophila, but no CHAT mutations have been observed in humans to date. Here we report that mutations in CHAT cause a congenital myasthenic syndrome associated with frequently fatal episodes of apnea (CMS-EA). Studies of the neuromuscular junction in this disease show a stimulation-dependent decrease of the amplitude of the miniature endplate potential and no deficiency of the ACh receptor. These findings point to a defect in ACh resynthesis or vesicular filling and to CHAT as one of the candidate genes. Direct sequencing of CHAT reveals 10 recessive mutations in five patients with CMS-EA. One mutation (523insCC) is a frameshifting null mutation. Three mutations (I305T, R420C, and E441K) markedly reduce ChAT expression in COS cells. Kinetic studies of nine bacterially expressed ChAT mutants demonstrate that one mutant (E441K) lacks catalytic activity, and eight mutants (L210P, P211A, I305T, R420C, R482G, S498L, V506L, and R560H) have significantly impaired catalytic efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is an autosomal recessive lysosomal storage disorder due to an inherited deficiency of β-glucuronidase. A naturally occurring mouse model for this disease was discovered at The Jackson Laboratory and shown to be due to homozygosity for a 1-bp deletion in exon 10 of the gus gene. The murine model MPS VII (gusmps/mps) has been very well characterized and used extensively to evaluate experimental strategies for lysosomal storage diseases, including bone marrow transplantation, enzyme replacement therapy, and gene therapy. To enhance the value of this model for enzyme and gene therapy, we produced a transgenic mouse expressing the human β-glucuronidase cDNA with an amino acid substitution at the active site nucleophile (E540A) and bred it onto the MPS VII (gusmps/mps) background. We demonstrate here that the mutant mice bearing the active site mutant human transgene retain the clinical, morphological, biochemical, and histopathological characteristics of the original MPS VII (gusmps/mps) mouse. However, they are now tolerant to immune challenge with human β-glucuronidase. This “tolerant MPS VII mouse model” should be useful for preclinical trials evaluating the effectiveness of enzyme and/or gene therapy with the human gene products likely to be administered to human patients with MPS VII.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The active form of vitamin D, 1α,25-dihydroxyvitamin D [1α,25(OH)2D], is synthesized from its precursor 25 hydroxyvitamin D [25(OH)D] via the catalytic action of the 25(OH)D-1α-hydroxylase [1α(OH)ase] enzyme. Many roles in cell growth and differentiation have been attributed to 1,25(OH)2D, including a central role in calcium homeostasis and skeletal metabolism. To investigate the in vivo functions of 1,25(OH)2D and the molecular basis of its actions, we developed a mouse model deficient in 1α(OH)ase by targeted ablation of the hormone-binding and heme-binding domains of the 1α(OH)ase gene. After weaning, mice developed hypocalcemia, secondary hyperparathyroidism, retarded growth, and the skeletal abnormalities characteristic of rickets. These abnormalities are similar to those described in humans with the genetic disorder vitamin D dependent rickets type I [VDDR-I; also known as pseudovitamin D-deficiency rickets (PDDR)]. Altered non-collagenous matrix protein expression and reduced numbers of osteoclasts were also observed in bone. Female mutant mice were infertile and exhibited uterine hypoplasia and absent corpora lutea. Furthermore, histologically enlarged lymph nodes in the vicinity of the thyroid gland and a reduction in CD4- and CD8-positive peripheral T lymphocytes were observed. Alopecia, reported in vitamin D receptor (VDR)-deficient mice and in humans with VDDR-II, was not seen. The findings establish a critical role for the 1α(OH)ase enzyme in mineral and skeletal homeostasis as well as in female reproduction and also point to an important role in regulating immune function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sanfilippo syndrome type B is a lysosomal storage disorder caused by deficiency of alpha-N-acetylglucosaminidase; it is characterized by profound mental deterioration in childhood and death in the second decade. For understanding the molecular genetics of the disease and for future development of DNA-based therapy, we have cloned the cDNA and gene encoding alpha-N-acetylglucosaminidase. Cloning started with purification of the bovine enzyme and use of a conserved oligonucleotide sequence to probe a human cDNA library. The cDNA sequence was found to encode a protein of 743 amino acids, with a 20- to 23-aa signal peptide immediately preceding the amino terminus of the tissue enzyme and with six potential N-glycosylation sites. The 8.5-kb gene (NAGLU), interrupted by 5 introns, was localized to the 5'-flanking sequence of a known gene, EDH17B, on chromosome 17q21. Five mutations were identified in cells of patients with Sanfilippo syndrome type B: 503del10, R297X, R626X, R643H, and R674H. The occurrence of a frameshift and a nonsense mutation in homozygous form confirms the identity of the NAGLU gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group B streptococci (GBS) cause sepsis and meningitis in neonates and serious infections in adults with underlying chronic illnesses. Specific antibodies have been shown to be an important factor in protective immunity for neonates, but the role of serum complement is less well defined. To elucidate the function of the complement system in immunity to this pathogen, we have used the approach of gene targeting in embryonic stem cells to generate mice totally deficient in complement component C3. Comparison of C3-deficient mice with mice deficient in complement component C4 demonstrated that the 50% lethal dose for GBS infection was reduced by approximately 50-fold and 25-fold, respectively, compared to control mice. GBS were effectively killed in vitro by human blood leukocytes in the presence of specific antibody and C4-deficient serum but not C3-deficient serum. The defective opsonization by C3-deficient serum in vitro was corroborated by in vivo studies in which passive immunization of pregnant dams with specific antibodies conferred protection from GBS challenge to normal and C4-deficient pups but not C3-deficient pups. These results indicate that the alternative pathway is sufficient to mediate effective opsonophagocytosis and protective immunity to GBS in the presence of specific antibody. In contrast, the increased susceptibility to infection of non-immune mice deficient in either C3 or C4 implies that the classical pathway plays an essential role in host defense against GBS infection in the absence of specific immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lowe syndrome, also known as oculocerebrorenal syndrome, is caused by mutations in the X chromosome-encoded OCRL gene. The OCRL protein is 51% identical to inositol polyphosphate 5-phosphatase II (5-phosphatase II) from human platelets over a span of 744 aa, suggesting that OCRL may be a similar enzyme. We engineered a construct of the OCRL cDNA that encodes amino acids homologous to the platelet 5-phosphatase for expression in baculovirus-infected Sf9 insect cells. This cDNA encodes aa 264-968 of the OCRL protein. The recombinant protein was found to catalyze the reactions also carried out by platelet 5-phosphatase II. Thus OCRL converts inositol 1,4,5-trisphosphate to inositol 1,4-bisphosphate, and it converts inositol 1,3,4,5-tetrakisphosphate to inositol 1,3,4-trisphosphate. Most important, the enzyme converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. The relative ability of OCRL to catalyze the three reactions is different from that of 5-phosphatase II and from that of another 5-phosphatase isoenzyme from platelets, 5-phosphatase I. The recombinant OCRL protein hydrolyzes the phospholipid substrate 10- to 30-fold better than 5-phosphatase II, and 5-phosphatase I does not cleave the lipid at all. We also show that OCRL functions as a phosphatidylinositol 4,5-bisphosphate 5-phosphatase in OCRL-expressing Sf9 cells. These results suggest that OCRL is mainly a lipid phosphatase that may control cellular levels of a critical metabolite, phosphatidylinositol 4,5-bisphosphate. Deficiency of this enzyme apparently causes the protean manifestations of Lowe syndrome.