932 resultados para Acid phosphate activity
Resumo:
Dried flowers and leaves of Origanum glandulosum Desf. were submitted to hydrodistillation (HD) and supercritical fluid extraction with CO2 (SFE). The essential oils isolated by HD and volatile oils obtained by SFE were analysed by GC and GC/MS. Total phenolics content and antioxidant effectiveness were performed. The main components of the essential oils from Bargou and Nefza were: p-cymene (40.4% and 39%), thymol (38.7% and 34.4%) and γ- terpinene (12.3% and 19.2%), respectively. The major components obtain by SFE in the volatile oil, from Bargou and Nefza, were: p-cymene (32.3% and 36.2%), thymol (41% and 40%) and γ-terpinene (20.3% and 13.3%). Total phenolic content, expressed in gallic acid equivalent (GAE) g kg-1 dry weight, varied from 12 to 27 g kg-1 dw, and the ability to scavenge the DPPH radicals, expressed by IC50 ranged from 44 to143 mg L-1.
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The effect of peel and seed removal, two commonly practiced procedures either at home or by the processing industry, on the physicochemical properties, bioactive compounds contents and antioxidant capacity of tomato fruits of four typical Portuguese cultivars (cereja, chucha, rama and redondo) were appraised. Both procedures caused significant nutritional and antioxidant activity losses in fruits of every cultivar. In general, peeling was more detrimental, since it caused a higher decrease in lycopene, bcarotene, ascorbic acid and phenolics contents (averages of 71%, 50%, 14%, and 32%, respectively) and significantly lowered the antioxidant capacity of the fruits (8% and 10%, using DPPH. and b-carotene linoleate model assays, correspondingly). Although seeds removal favored the increase of both color and sweetness, some bioactive compounds (11% of carotenoids and 24% of phenolics) as well as antioxidant capacity (5%) were loss. The studied cultivars were differently influenced by these procedures. The fruits most affected by peeling were those from redondo cultivar (-66% lycopene, -44% b-carotene, -26% ascorbic acid and -38% phenolics). Seeds removal, in turn, was more injurious for cereja tomatoes (-10% lycopene, -38% b-carotene, -25% ascorbic acid and -63% phenolics). Comparatively with the remaining ones, the rama fruits were less affected by the trimming procedures.
Resumo:
The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene)-2-hydroxybenzohydrazide (H3L) with copper(II) nitrate, acetate or metaborate has led to the isomeric complexes [Cu-3(L)(2)(MeOH)(4)] (1), [Cu-3(L)(2)(MeOH)(2)]2MeOH (2) and [Cu-3(L)(2)(MeOH)(4)] (3), respectively, in which the ligand L exhibits dianionic (HL2-, in 1) or trianionic (L3-, in 2 and 3) pentadentate 1O,O,N:2N,O chelation modes. Complexes 1-3 were characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography, electrochemical methods and variable-temperature magnetic susceptibility measurements, which indicated that the intratrimer antiferromagnetic coupling is strong in the three complexes and that there exists very weak ferromagnetic intermolecular interactions in 1 but weak antiferromagnetic intermolecular interactions in both 2 and 3. Electrochemical experiments showed that in complexes 1-3 the Cu-II ions can be reduced, in distinct steps, to Cu-I and Cu-0. All the complexes act as efficient catalyst precursors under mild conditions for the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, leading to overall yields (based on the alkane) of up to 31% (TON = 1.55x10(3)) after 6 h in the presence of pyrazinecarboxylic acid.
Resumo:
Leishmania braziliensis is a causative agent of American Cutaneous Leishmaniasis (ACL). The 034-JCG strain, isolated from a patient from the northern region of Paraná State, Brazil, was cultivated in Blood Agar Base medium, lyophilized and submitted to phenol-water extraction. The extract was treated with RNase I. The carbohydrate containing-antigen (Ag-CHO) was immunogenic to rabbits and showed at least a fraction with some negative charge at pH 8.2. This antigen showed cross-reactivity with the phenol-water extract of the growth medium used for the culture of promastigotes and with the surface antigens of promastigotes. Its composition is: 24.3% of total sugars, from which 11.2% of galactose, 7.5% of mannose and 5.6% of ribose. Protein content was 5.4% and phosphate 18.5%. The antigenic activity was maintained after: repeated freezing-thawing; lyophilization; heating at 100ºC for 30 minutes; treatment with RNase, trichloroacetic acid and sodium metaperiodate. The precipitin line obtained is Periodic Acid Schiff positive. The application of the Ag-CHO in counterimmunoelectrophoresis reaction for the immunodiagnosis of ACL showed 60% sensitivity, and no cross-reaction with the five sera of Chagas' disease patients tested. The use of this antigen in a more sensitive technique, with more samples of sera, may improve these results.
Resumo:
Four pentacyclic triterpenes isolated from Austroplenckia populnea and four compounds of known anti T. cruzi or anti-malarial activity were tested. Of those triterpenes tested 20alpha-hydroxy-tingenone showed high activity, epikatonic acid was less active, while populnilic and populninic acids were inactive against the trypanosome of the subgenus Schizotrypanum tested. Benzonidazole, nifurtimox, ketoconazole and primaquine presented a remarkable dose-dependent inhibitory effect reaching practically to a total growth inhibition of the parasite at the end of incubation time. The trypanosome tested appear to be a suitable model for preliminary screen for anti T. (S.) cruzi compounds.
Resumo:
A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.
Resumo:
Sialic acids are key structural determinants and contribute to the functionality of a number of immune cell receptors. Previously, we demonstrated that differentiation of human dendritic cells (DCs) is accompanied by an increased expression of sialylated cell surface structures, putatively through the activity of the ST3Gal.I and ST6Gal.I sialyltransferases. Furthermore, DC endocytosis was reduced upon removal of the cell surface sialic acid residues by neuraminidase. In the present work, we evaluate the contribution of the sialic acid modifications in DC maturation. We demonstrate that neuraminidase-treated human DCs have increased expression of major histocompatibility complex (MHC) and costimulatory molecules, increased gene expression of specific cytokines and induce a higher proliferative response of T lymphocytes. Together, the data suggest that clearance of cell surface sialic acids contributes to the development of a T helper type 1 proinflammatory response. This postulate is supported by mouse models, where elevated MHC class II and increased maturation of specific DC subsets were observed in DCs harvested from ST3Gal.I(-/-) and ST6Gal.I(-/-) mice. Moreover, important qualitative differences, particularly in the extent of reduced endocytosis and in the peripheral distribution of DC subsets, existed between the ST3Gal.I(-/-) and ST6Gal.I(-/-) strains. Together, the data strongly suggest not only a role of cell surface sialic acid modifications in maturation and functionality of DCs, but also that the sialic acid linkages created by different sialyltransferases are functionally distinct. Consequently, with particular relevance to DC-based therapies, cell surface sialylation, mediated by individual sialyltransferases, can influence the immunogenicity of DCs upon antigen loading.
Resumo:
For the first time, a glassy carbon electrode (GCE) modified with novel N-doped carbon nanotubes (CNT-N) functionalized with MnFe2O4 nanoparticles (MnFe2O4@CNT-N) has been prepared and applied for the electrochemical determination of caffeine (CF), acetaminophen (AC) and ascorbic acid (AA). The electrochemical behaviour of CF, AC and AA on the bare GCE, CNT-N/GCE and MnFe2O4@CNT-N/GCE were carefully investigated using cyclic voltammetry (CV) and square-wave voltammetry (SWV). Compared to bare GCE and CNT-N modified electrode, the MnFe2O4@CNT-N modified electrode can remarkably improve the electrocatalytic activity towards the oxidation of CF, AC and AA with an increase in the anodic peak currents of 52%, 50% and 55%, respectively. Also, the SWV anodic peaks of these molecules could be distinguished from each other at the MnFe2O4@CNT-N modified electrode with enhanced oxidation currents. The linear response ranges for the square wave voltammetric determination of CF, AC and AA were 1.0 × 10−6 to 1.1 × 10−3 mol dm−3, 1.0 × 10−6 to 1.0 × 10−3 mol dm−3 and 2.0 × 10−6 to 1.0 × 10−4 mol dm−3 with detection limit (S/N = 3) of 0.83 × 10−6, 0.83 × 10−6 and 1.8 × 10−6 mol dm−3, respectively. The sensitivity values at the MnFe2O4@CNT-N/GCE for the individual determination of AC, AA and CF and in the presence of the other molecules showed that the quantification of AA and CF show no interferences from the other molecules; however, AA and CF interfered in the determination of AC, with the latter molecule showing the strongest interference. Nevertheless, the obtained results show that MnFe2O4@CNT-N composite material acted as an efficient electrochemical sensor towards the selected biomolecules.
Resumo:
New lipophilic hydroxycinnamic acid based derivatives were designed and synthesized and their antioxidant and neuroprotective activities evaluated. The chemical modification introduced in the cinnamic acid scaffold leads to compounds with amplified lipophilicity and in general with increased antioxidant activity when compared to natural models (caffeic and ferulic acids). The compounds did not display cytotoxicity and present a significant neuroprotective effect against 6-OH-DA induced damage to SH-SY5Y cells. Compound 6 stands out as an efficient radical scavenger and iron(II) chelator that ensures drug-like properties. Moreover, neuroprotection against oxidative damage was observed even at low concentration (1 μM). Therefore, compound 6 developed by a biology-oriented approach displays a combination of important features for a further optimization process that will generate a new effective antioxidant with therapeutic application for oxidative-stress-related events, namely neurodegenerative diseases.
Resumo:
RESUMO: Sessenta e três derivados de hidantoína foram utilizados para avaliar possíveis efeitos de modulação na actividade das bombas de efluxo (BE) na Salmonella NCTC 13349 utilizando um método fluorimétrico semi-automático. Nenhum dos compostos apresentaram actividade anti-bacteriana até concentrações de 240 mg/L. Entre todos os compostos, SZ-7 demonstrou possuir propriedades de modulação de effluxo na presença de glucose. Para testar esta actividade, estirpes de Salmonella resistentes à ciprofloxacina, induzidas a elevados níveis de resistência com sobre-expressão de BE, foram expostas ao SZ-7. Este derivado afectou a susceptibilidade das estirpes à ciprofloxacina. Uma vez que os 63 compostos estudados apresentaram pouco efeito inibitório /cumulativo, apesar de serem conhecidos pelos seus efeitos moduladores de BE-dependentes de iões em eucariotas, foi questionado o papel dos iões na regulação de BE bacterianas, que poderão influenciar a eficácia de novos compostos. Para este estudo, utilizamos a Escherichia coli AG100 como modelo, devido ao extenso conhecimento no que respeita a estrutura e actividade das BE. Devido à importância de iões de cálcio (Ca2+) nos canais de transporte membranar e na actividade de ATPases, a sua actividade na modulação do efluxo foi investigada. De resultados anteriormente obtidos concluiu-se que a pH 5 o efluxo é independente de energia metabólica; contudo, a pH 8 é absolutamente dependente, sendo que o Ca2+ é indispensável para manter a actividade das ATPases bacterianas. A acumulação/effluxo de EtBr pela E. coli AG100 foi determinada na presença/ausência de Ca2+, clorpromazina (inibidor de ligação de Ca2+ a proteínas), e ácido etilenodiamino tetra-acético (quelante de Ca2+). Acumulação/effluxo aumentou a pH 8, contudo o Ca2+ reverte estes efeitos evidenciando a sua importância no funcionamento das BE bacterianas. Em resumo este trabalho colocou em evidência que muitos aspectos bioquímicos e bioenergéticos devem ser tomados em consideração no estudo da resistência bacteriana mediada por BE.------- ABSTRACT: Sixty-three hydantoin derivatives were evaluated for their modulating effects on efflux pump (EP) activity of Salmonella NCTC 13349 utilizing a semi-automatic fluorometric method. None of the compounds presented antibacterial activities at concentrations as high as 240 mg/L. Among all compounds, SZ-7 showed possible efflux modulating activity in the presence of glucose, indicative of a potential EP inhibitor. To verify its potential effects, ciprofloxacin-resistant Salmonella strains, induced to high level resistance with over-expressing EPs, were exposed to SZ-7. This derivative affected the susceptibility of the ciprofloxacin-resistant strains. Since the 63 compounds studied had very low inhibitory/accumulative effects, even though their known for being efficient in modulating ion-driven eukaryotic EPs, we questioned whether ions had a leading role in regulating bacterial EPs, influencing the effectiveness of new compounds. For this study we used Escherichia coli AG100 as a model, due to the extensive knowledge on its EPs structure and activity. Owing the importance of calcium ions (Ca2+) for membrane transport channels and activity of ATPases, the role of Ca2+ was investigated. From previous results we concluded that at pH 5 efflux is independent of metabolic energy; however, at pH 8 it is entirely dependent of metabolic energy and the Ca2+ ions are essential to maintain the activity of bacterial ATPases. Accumulation and efflux of ethidium bromide (EtBr) by E. coli AG100 was determined in the presence and absence of Ca2+, chlorpromazine (inhibitor of Ca2+-binding to proteins), and ethylenediaminetetraacetic acid (Ca2+ chelator). Accumulation of EtBr increased at pH 8; however Ca2+ reversed these effects providing information as to the importance of this ion in the regulation of bacterial EP systems. Overall this work puts in evidence that many biochemical and bioenergetic aspects related to the strains physiology need to be taken into consideration in bacterial drug resistance mediated by EPs.
Resumo:
Twelve strains of Trypanosoma cruzi isolated from wild reservoirs, triatomines, and chronic chagasic patients in the state of Paraná, southern Brazil, and classified as T. cruzi I and II, were used to test the correlation between genetic and biological diversity. The Phagocytic Index (PI) and nitric-oxide (NO) production in vitro were used as biological parameters. The PI of the T. cruzi I and II strains did not differ significantly, nor did the PI of the T. cruzi strains isolated from humans, triatomines, or wild reservoirs. There was a statistical difference in the inhibition of NO production between T. cruzi I and II and between parasites isolated from humans and the strains isolated from triatomines and wild reservoirs, but there was no correlation between genetics and biology when the strains were analyzed independently of the lineages or hosts from which the strains were isolated. There were significant correlations for Randomly Amplified Polymorphic Deoxyribonucleic acid (RAPD) and biological parameters for T. cruzi I and II, and for humans or wild reservoirs when the lineages or hosts were considered individually.
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Normal human metabolism leads to the daily production of large amounts of volatile and non-volatile acids. The maintenance of the pH within physiological limits is a demanding task in which several mechanisms are involved. The most immediate answer comes from several physiological buffers that quickly neutralize pH deviations caused by the addition of strong acids or bases to the body. Bicarbonate/carbonic acid is the most important buffer pair of the extracellular milieu, but is chemically inefficient and depends on the continuous activity of the lung and kidney. Other physiological buffers have higher efficacy and are very important in the intracellular environment and renal tubules. The capacity of the various chemical buffers is kept by operating in an open system and by several controlling mechanisms. The lung is responsible for the elimination of the carbon dioxide (CO2) produced in the body. In metabolic disorders, respiratory adjustment of the elimination of CO2 prolongs the effect of the bicarbonate/carbonic acid buffer, but this process consumes bicarbonate. The kidney contributes to acid-base balance through several mechanisms: 1) controls the reabsorption of filtered bicarbonate; 2) regenerates bicarbonate consumed in buffer reactions; 3) eliminates non-volatile acids. Renal elimination of acid and bicarbonate regeneration is only possible due to the existence of several urinary buffers and to the ability of the kidneys to produce ammonia