995 resultados para Acanthocyclops sp., biomass as carbon
Resumo:
Landscape scale environmental gradients present variable spatial patterns and ecological processes caused by climate, topography and soil characteristics and, as such, offer candidate sites to study environmental change. Data are presented on the spatial pattern of dominant species, biomass, and carbon pools and the temporal pattern of fluxes across a transitional zone shifting from Great Basin Desert scrub, up through pinyon-juniper woodlands and into ponderosa pine forest and the ecotones between each vegetation type. The mean annual temperature (MAT) difference across the gradient is approximately 3 degrees C from bottom to top (MAT 8.5-5.5) and annual precipitation averages from 320 to 530 mm/yr, respectively. The stems of the dominant woody vegetation approach a random spatial pattern across the entire gradient, while the canopy cover shows a clustered pattern. The size of the clusters increases with elevation according to available soil moisture which in turn affects available nutrient resources. The total density of woody species declines with increasing soil moisture along the gl-adient, but total biomass increases. Belowground carbon and nutrient pools change from a heterogenous to a homogenous distribution on either side of the woodlands. Although temperature controls the: seasonal patterns of carbon efflux from the soils, soil moisture appears to be the primary driving variable, but response differs underneath the different dominant species, Similarly, decomposition of dominant litter occurs faster-at the cooler and more moist sites, but differs within sites due to litter quality of the different species. The spatial pattern of these communities provides information on the direction of future changes, The ecological processes that we documented are not statistically different in the ecotones as compared to the: adjoining communities, but are different at sites above the woodland than those below the woodland. We speculate that an increase in MAT will have a major impact on C pools and C sequestering and release processes in these semiarid landscapes. However, the impact will be primarily related to moisture availability rather than direct effects of an increase in temperature. (C) 1998 Elsevier Science B.V.
Resumo:
To quantify the impact that planting indigenous trees and shrubs in mixed communities (environmental plantings) have on net sequestration of carbon and other environmental or commercial benefits, precise and non-biased estimates of biomass are required. Because these plantings consist of several species, estimation of their biomass through allometric relationships is a challenging task. We explored methods to accurately estimate biomass through harvesting 3139 trees and shrubs from 22 plantings, and collating similar datasets from earlier studies, in non-arid (>300mm rainfallyear-1) regions of southern and eastern Australia. Site-and-species specific allometric equations were developed, as were three types of generalised, multi-site, allometric equations based on categories of species and growth-habits: (i) species-specific, (ii) genus and growth-habit, and (iii) universal growth-habit irrespective of genus. Biomass was measured at plot level at eight contrasting sites to test the accuracy of prediction of tonnes dry matter of above-ground biomass per hectare using different classes of allometric equations. A finer-scale analysis tested performance of these at an individual-tree level across a wider range of sites. Although the percentage error in prediction could be high at a given site (up to 45%), it was relatively low (<11%) when generalised allometry-predictions of biomass was used to make regional- or estate-level estimates across a range of sites. Precision, and thus accuracy, increased slightly with the level of specificity of allometry. Inclusion of site-specific factors in generic equations increased efficiency of prediction of above-ground biomass by as much as 8%. Site-and-species-specific equations are the most accurate for site-based predictions. Generic allometric equations developed here, particularly the generic species-specific equations, can be confidently applied to provide regional- or estate-level estimates of above-ground biomass and carbon. © 2013 Elsevier B.V.
Resumo:
In this study, the potential for increasing the tree cover and thereby the biomass and carbon as a mitigation option of three categories of wastelands, irrespective of their tenure, are considered. The area under wastelands in Himachal Pradesh, according to NRSA (2005), is estimated to be 2.83 Mha. Among the 28 categories of wastelands reported by NRSA, only 15 categories exist in Himachal Pradesh. In the present study, three land categories are considered for estimating the mitigation potential. They include: (i) Degraded forestland, (ii) Degraded community land and (iii) Degraded and abandoned private land. Choice of species or the mix of species to be planted on the three land categories considered for reforestation is discussed. Carbon pools considered in the present study are those, which account only for aboveground biomass, belowground biomass and soil organic carbon. This study estimates the mitigation potential at the state level considering land available under more than one category. It also provides a roadmap for future work in support of mitigation analysis and implementation.
Resumo:
Pollutant plumes with enhanced concentrations of trace gases and aerosols were observed over the southern coast of West Africa during August 2006 as part of the AMMA wet season field campaign. Plumes were observed both in the mid and upper troposphere. In this study we examined the origin of these pollutant plumes, and their potential to photochemically produce ozone (O3) downwind over the Atlantic Ocean. Their possible contribution to the Atlantic O3 maximum is also discussed. Runs using the BOLAM mesoscale model including biomass burning carbon monoxide (CO) tracers were used to confirm an origin from central African biomass burning fires. The plumes measured in the mid troposphere (MT) had significantly higher pollutant concentrations over West Africa compared to the upper tropospheric (UT) plume. The mesoscale model reproduces these differences and the two different pathways for the plumes at different altitudes: transport to the north-east of the fire region, moist convective uplift and transport to West Africa for the upper tropospheric plume versus north-west transport over the Gulf of Guinea for the mid-tropospheric plume. Lower concentrations in the upper troposphere are mainly due to enhanced mixing during upward transport. Model simulations suggest that MT and UT plumes are 16 and 14 days old respectively when measured over West Africa. The ratio of tracer concentrations at 600 hPa and 250 hPa was estimated for 14–15 August in the region of the observed plumes and compares well with the same ratio derived from observed carbon dioxide (CO2) enhancements in both plumes. It is estimated that, for the period 1–15 August, the ratio of Biomass Burning (BB) tracer concentration transported in the UT to the ones transported in the MT is 0.6 over West Africa and the equatorial South Atlantic. Runs using a photochemical trajectory model, CiTTyCAT, initialized with the observations, were used to estimate in-situ net photochemical O3 production rates in these plumes during transport downwind of West Africa. The mid-troposphere plume spreads over altitude between 1.5 and 6 km over the Atlantic Ocean. Even though the plume was old, it was still very photochemically active (mean net O3 production rates over 10 days of 2.6 ppbv/day and up to 7 ppbv/day during the first days) above 3 km especially during the first few days of transport westward. It is also shown that the impact of high aerosol loads in the MT plume on photolysis rates serves to delay the peak in modelled O3 concentrations. These results suggest that a significant fraction of enhanced O3 in mid-troposphere over the Atlantic comes from BB sources during the summer monsoon period. According to simulated occurrence of such transport, BB may be the main source for O3 enhancement in the equatorial south Atlantic MT, at least in August 2006. The upper tropospheric plume was also still photochemically active, although mean net O3 production rates were slower (1.3 ppbv/day). The results suggest that, whilst the transport of BB pollutants to the UT is variable (as shown by the mesoscale model simulations), pollution from biomass burning can make an important contribution to additional photochemical production of O3 in addition to other important sources such as nitrogen oxides (NOx) from lightning.
Resumo:
Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0 to 10 years old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height were first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, but also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age specific parameters of biomass allocation patterns.
Resumo:
In the North of Minas Gerais it is cultivated basically 'Prata-Ana' banana, a cultivar that requires mainly Zn. The possibility of zinc supply, without this nutrient getting in contact with the soil, it is important for the region, since several factors take to the low availability of the element supplied by the soil, as: elevated organic matter content on the surface (from cultural residues); maintenance of high pH of the soil - above 6,00 - as strategy contrary to the proliferation of the causal agent of the Fusarium Wilt; frequent fertilizations with potassium and magnesium that, besides converting the medium into base, they reduce the participation of Zn in the balance cation/anion of the soil, hindering the absortion of this micronutrient by the plant. For determining the distribution of biomass and minerals in the Prata-Ana" banana, cultivated under irrigation in the North of Minas Gerais, when the zinc was supplied through thinned sprout, an experiment was carried out in the Irrigated Perimeter of Jaiba. The plants were fertilized with 0,00; 1,66 and 3,33 g.family-(1) of Zn, through thinned sprout. One month after the fertilizations from October 2007 and February 2008, the production of fresh mass (FM) and dry mass (DM) were evaluated, the contents and meanings of minerals in all the bananas "family" bodies composed by mother-plant with bunch + tall daughter-plant + granddaughter-plant. The doses of Zn did not influence on the production of FM and DM of the plants in the first evaluation, while in the second evaluation positive effect of the treatment was observed just for MF accumulated in the inferior leaves, in the portions of the medium third and inferior of the pseudostem, and in the mother-plant's rhizome. As much the content as the accumulation of nutrients in the mother-plants presented the following decreasing order: K > N > Ca > Mg > P > S > Fe > Zn > B > Cu. The Zn contents were affected by the dose of that micronutrient in the most of the studied situations. The zinc supplied through thinned sprout increased in the mother-plant, and then it was redistributed in the banana's "family".
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work was performed to verify the chemical structure, mechanical and hydrophilic properties of amorphous hydrogenated carbon films prepared by plasma enhanced chemical vapor deposition, using acetylene/argon mixture as monomer. Films were prepared in a cylindrical quartz reactor, fed by 13.56 MHz radiofrequency. The films were grown during 5 min, for power varying from 25 to 125 W at a fixed pressure of 9.5 Pa. After deposition, all samples were treated by SF(6) plasma with the aim of changing their hydrophilic character. Film chemical structure investigated by Raman spectroscopy, revealed the increase of sp(3) hybridized carbon bonds as the plasma power increases. Hardness measurements performed by the nanoindentation technique showed an improvement from 5 GPa to 14 GPa following the increase discharge power. The untreated films presented a hydrophilic character, which slightly diminished after SF(6) plasma treatment.
Resumo:
Rare earth (RE) metals are essentials for the manufacturing of high-technology products. The separation of RE is complex and expensive; biosorption is an alternative to conventional processes. This work focuses on the biosorption of monocomponent and bicomponent solutions of lanthanum(III) and neodymium(III) in fixed-bed columns using Sargassum sp. biomass. The desorption of metals with HCl 0.10 mol L-1 from loaded biomass is also carried out with the objective of increasing the efficiency of metal separation. Simple models have been successfully used to model breakthrough curves (i.e., Thomas, Bohart-Adams, and Yoon-Nelson equations) for the biosorption of monocomponent solutions. From biosorption and desorption experiments in both monocomponent and bicomponent solutions, a slight selectivity of the biomass for Nd(III) over La(III) is observed. The experiments did not find an effective separation of the RE studied, but their results indicate a possible partition between the metals, which is the fundamental condition for separation perspectives. (C) 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012
Resumo:
Soil samples collected in the campus, UNESP, Araraquara, SP, were employed to isolate and characterize fungi strains with potential pectinolytic enzymes. These enzymes have arisen great interest due to its increasing application in the food industry. Two hundred forty six strains were isolated based on the appearance of colony on PDA medium, morphology (septate mycelia, nonseptate conidiophore, black conidia, and clublike spore-bearing head), after 48 h of growth at 30°C. Strains were selected in solid medium containing pectin citrus as sole carbon source and 0.5% rutenium red. The characterization of pectinolytic production was performed in solid culture and batch fermentation medium containing pectin citrus. The enzyme pectinolytic production was evaluated at 30°C, without agitation in 100 mL of medium containing 2% pectin citrus, 0.2% ammonium sulphate, 0.2% magnesium sulphate, and 0.05% potassium phosphate. The maximum pectinolytic activity (15U/mL) was observed in the medium after Aspergillus sp CFCF-0492 growth, while Aspergillus sp CFCF-CC1 showed the higher level of the final biomass. The pectinolytic activity is more preserved when the fungi-spores were maintained in agar-Czapeck medium.
Resumo:
Soil tillage and other methods of soil management may influence CO 2 emissions because they accelerate the mineralization of organic carbon in the soil. This study aimed to quantify the CO2 emissions under conventional tillage (CT), minimum tillage (MT) and reduced tillage (RT) during the renovation of sugarcane fields in southern Brazil. The experiment was performed on an Oxisol in the sugarcane-planting area with mechanical harvesting. An undisturbed or no-till (NT) plot was left as a control treatment. The CO2 emissions results indicated a significant interaction (p < 0.001) between tillage method and time after tillage. By quantifying the accumulated emissions over the 44 days after soil tillage, we observed that tillage-induced emissions were higher after the CT system than the RT and MT systems, reaching 350.09 g m-2 of CO2 in CT, and 51.7 and 5.5 g m-2 of CO2 in RT and MT respectively. The amount of C lost in the form of CO2 due to soil tillage practices was significant and comparable to the estimated value of potential annual C accumulation resulting from changes in the harvesting system in Brazil from burning of plant residues to the adoption of green cane harvesting. The CO 2 emissions in the CT system could respond to a loss of 80% of the potential soil C accumulated over one year as result of the adoption of mechanized sugarcane harvesting. Meanwhile, soil tillage during the renewal of the sugar plantation using RT and MT methods would result in low impact, with losses of 12% and 2% of the C that could potentially be accumulated during a one year period. © 2013 IOP Publishing Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (< 40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha(-1) (range 6.6 to 112.4) to 8.0 Mg ha(-1) (-2.5 to 23.0).