920 resultados para Acúmulo de biomassa
Resumo:
As pastagens naturais do Rio Grande do Sul tem sido consideradas como importante base forrageira para a produção animal em sistemas de produção de base familiar.
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
O objetivo do trabalho foi estudar a partição da biomassa na copa de clones comerciais de eucaliptos em Integração Lavoura Pecuária Floresta (ILPF) e recomendar práticas de desrama. Os dados foram coletados na Fazenda Guarantã em Juara, MT, e foram avaliados cinco clones implantados em renques duplos e triplos em espaçamento de 21 x 3,5 x 2,5 m aos 15 meses de idade. Para o estudo da biomassa na parte aérea das plantas foram selecionadas duas árvores amostras de cada clone, que foram abatidas e tiveram a biomassa da copa, tronco e densidade básica determinados. Concluiu-se que a distribuição da biomassa e área foliar ao longo da copa variou em função do material genético e da configuração de plantio. Para todos os materiais genéticos avaliados, foi observada a presença de galhos mortos na copa, indicando a necessidade de se fazer desramas antes dos 15 meses de idade se o objetivo for produzir madeira para serraria. A definição da intensidade de desrama com base na proporção da altura da copa viva mostrou-se inadequada quando empregada de forma genérica sem o estudo prévio da arquitetura da copa.
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
2016
Resumo:
There is an increasing need to compare the results obtained with different methods of estimation of tree biomass in order to reduce the uncertainty in the assessment of forest biomass carbon. In this study, tree biomass was investigated in a 30-year-old Scots pine (Pinus sylvestris) (Young-Stand) and a 130-year-old mixed Norway spruce (Picea abies)-Scots pine stand (Mature-Stand) located in southern Finland (61º50' N, 24º22' E). In particular, a comparison of the results of different estimation methods was conducted to assess the reliability and suitability of their applications. For the trees in Mature-Stand, annual stem biomass increment fluctuated following a sigmoid equation, and the fitting curves reached a maximum level (from about 1 kg/yr for understorey spruce to 7 kg/yr for dominant pine) when the trees were 100 years old. Tree biomass was estimated to be about 70 Mg/ha in Young-Stand and about 220 Mg/ha in Mature-Stand. In the region (58.00-62.13 ºN, 14-34 ºE, ≤ 300 m a.s.l.) surrounding the study stands, the tree biomass accumulation in Norway spruce and Scots pine stands followed a sigmoid equation with stand age, with a maximum of 230 Mg/ha at the age of 140 years. In Mature-Stand, lichen biomass on the trees was 1.63 Mg/ha with more than half of the biomass occurring on dead branches, and the standing crop of litter lichen on the ground was about 0.09 Mg/ha. There were substantial differences among the results estimated by different methods in the stands. These results imply that a possible estimation error should be taken into account when calculating tree biomass in a stand with an indirect approach.
Resumo:
Soils represent a remarkable stock of carbon, and forest soils are estimated to hold half of the global stock of soil carbon. Topical concern about the effects of climate change and forest management on soil carbon as well as practical reporting requirements set by climate conventions have created a need to assess soil carbon stock changes reliably and transparently. The large spatial variability of soil carbon commensurate with relatively slow changes in stocks hinders the assessment of soil carbon stocks and their changes by direct measurements. Models therefore widely serve to estimate carbon stocks and stock changes in soils. This dissertation aimed to develop the soil carbon model YASSO for upland forest soils. The model was aimed to take into account the most important processes controlling the decomposition in soils, yet remain simple enough to ensure its practical applicability in different applications. The model structure and assumptions were presented and the model parameters were defined with empirical measurements. The model was evaluated by studying the sensitivities of the model results to parameter values, by estimating the precision of the results with an uncertainty analysis, and by assessing the accuracy of the model by comparing the predictions against measured data and to the results of an alternative model. The model was applied to study the effects of intensified biomass extraction on the forest carbon balance and to estimate the effects of soil carbon deficit on net greenhouse gas emissions of energy use of forest residues. The model was also applied in an inventory based method to assess the national scale forest carbon balance for Finland’s forests from 1922 to 2004. YASSO managed to describe sufficiently the effects of both the variable litter and climatic conditions on decomposition. When combined with the stand models or other systems providing litter information, the dynamic approach of the model proved to be powerful for estimating changes in soil carbon stocks on different scales. The climate dependency of the model, the effects of nitrogen on decomposition and forest growth as well as the effects of soil texture on soil carbon stock dynamics are areas for development when considering the applicability of the model to different research questions, different land use types and wider geographic regions. Intensified biomass extraction affects soil carbon stocks, and these changes in stocks should be taken into account when considering the net effects of forest residue utilisation as energy. On a national scale, soil carbon stocks play an important role in forest carbon balances.