606 resultados para Absorbance
Resumo:
Diese Doktorarbeit befasst sich mit Ladungsgeneration und – rekombination in Feststoff-Farbstoffsolarzellen, die spiro-OMeTAD als Lochleiter verwenden. Die vorliegende Arbeit ist in drei Fallstudien unterteilt: i.) Kern-erweiterte Rylen-Farbstoffe, ii.) ein Perylenmonoimid-Farbstoff und iii.) Donor-π verbrückte (Cyclopentadithiophen)-Akzeptor-Farbstoffe. Trotz ihres hohen molaren Extinktionskoeffizienten und der hohen Absorbanz der sensibilisierten Filme, zeigen einige dieser Farbstoffmoleküle nur geringe photovoltaischen Effizienzen. Um den Ursprung des geringen Wirkungsgrades herauszufinden, wurde breitbandige, ultraschnelle transiente Absorptionsspektroskopie an Solarzellen durchgeführt.rnInsbesondere die Auswirkungen verschiedender Ankergruppen, Dipolmomente, Photolumineszenzlebenszeiten, Lithium-Kationensensitivität und Ladungsträgerdynamik, die alle einen großen Einfluss auf den Wirkungsgrad der Solarzelle besitzen, wurden untersucht. In der ersten Fallstudie zeigte ein kurzer Rylen-Farbstoff aufgrund deutlich verlängerter Lebenszeiten die beste Effizienz im Vergleich zu größeren Kern-erweiterten Rylen-Farbstoffen. Die Lebenszeit wurde weiter reduziert, wenn Maleinsäure als Ankergruppe unter einer Ringöffnungsreaktion an die mesoporöse Oberfläche des Metalloxid-Halbleiters adsorbierte. Dies konnte mit Hilfe von Berechnungen mittels der Dichtefunktionaltheorie (DFT, B3LYP) auf die Differenz des Dipolmoments zwischen Grundzustand und angeregtem Zustand zurückgeführt werden. Die Berechnungen bekräftigen die unvorteilhafte Injektion von Ladungen durch die Änderung der Richtung des Dipolmoments, wenn eine Ringöffnung der Anhydridgruppe stattfindet. In der zweiten Studie zeigte das Perylenmonoimid-Derivat ID889 einen Wirkungsgrad von 4.5% in Feststoff-Farbstoffsolarzellen, wobei ID889 sogar ohne Zuhilfenahme eines Additivs in der Lage ist langlebige Farbstoffkationen zu bilden. Die Verwendung von Lithium-Kationen stabilisiert jedoch sowohl den Prozess der Ladungsgeneration als auch den der Ladungsregeneration. Des Weiteren wurde in ID889-sensitivierten Bauteilen kein reduktives Löschen beobachtet. Dabei wurde die Dynamik der Exzitonen mittels einer soft-modelling Methode Kurvenanalyse aus den Daten der transienten Absorptionsspektroskopie gewonnen. Zuletzt wurden Strukturen mit Cyclopentadithiophen(CPDT)-Baustein untersucht, die eine typische D-π-A Molekülstruktur bilden. FPH224 und 233 zeigten dabei eine bessere Effizienz als FPH231 und 303 aufgrund einer großen Injektionseffizienz (IE) und längerer Lebenszeit der angeregten Zustände. Dies kann auf reduktives Löschen in FPH231 und 303 zurückgeführt werden, wohingegen FPH224 und 233 einen moderaten Zerfall des Spirokationensignals zeigten.
Resumo:
Pergularain e I, a cysteine protease with thrombin-like activity, was purified by ion exchange chromatography from the latex of Pergularia extensa. Its homogeneity was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), native PAGE and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of pergularain e I by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) was found to be 23.356 kDa and the N-terminal sequence is L-P-H-D-V-E. Pergularain e I is a glycoprotein containing approximately 20% of carbohydrate. Pergularain e I constituted 6.7% of the total protein with a specific activity of 9.5 units/mg/min with a 2.11-fold increased purity. Proteolytic activity of the pergularain e I was completely inhibited by iodoacetic acid (IAA). Pergularain e I exhibited procoagulant activity with citrated plasma and fibrinogen similar to thrombin. Pergularain e I increases the absorbance of fibrinogen solution in concentration-dependent and time-dependent manner. At 10 microg concentration, an absorbance of 0.48 was reached within 10 min of incubation time. Similar absorbance was observed when 0.2 NIH units of thrombin were used. Thrombin-like activity of pergularain e I is because of the selective hydrolysis of A alpha and B beta chains of fibrinogen and gamma-chain was observed to be insusceptible to hydrolysis. Molecular masses of the two peptide fragments released from fibrinogen due to the hydrolysis by pergularain e I at 5-min incubation time were found to be 1537.21 and 1553.29 and were in close agreement with the molecular masses of 16 amino acid sequence of fibrinopeptide A and 14 amino acid sequence of fibrinopeptide B, respectively. Prolonged fibrinogen-pergularain e I incubation releases additional peptides and their sequence comparison of molecular masses of the released peptides suggested that pergularain e I hydrolyzes specifically after arginine residues.
Resumo:
The recent increase in the amount of nanoparticles incorporated into commercial products is accompanied by a rising concern of the fate of these nanoparticles. Once released into the environment, it is inevitable that the nanoparticles will come into contact with the soil, introducing them to various routes of environmental contamination. One route that was explored in this research was the interaction between nanoparticles and clay minerals. In order to better define the interactions between clay minerals and positively charged nanoparticles, in situ atomic force microscopy (AFM) was utilized. In situ AFM experiments allowed interactions between clay minerals and positively charged nanoparticles to be observed in real time. The preliminary results demonstrated that in situ AFM was a reliable technique for studying the interactions between clay minerals and positively charged nanoparticles and showed that the nanoparticles affected the swelling (height) of the clay quasi-crystals upon exposure. The preliminary AFM data were complemented by batch study experiments which measured the absorbance of the nanoparticle filtrate after introduction to clay minerals in an effort to better determine the mobility of the positively charged nanoparticles in an environment with significant clay contribution. The results of the batch study indicated that the interactions between clay minerals and positively charged nanoparticles were size dependent and that the interactions of the different size nanoparticles with the clay may be occurring to different degrees. The degree to which the different size nanoparticles were interacting with the clay was further probed using FTIR (Fourier transform infrared) spectroscopy experiments. The results of these experiments showed that interactions between clay minerals and positively charged nanoparticles were size dependent as indicated by a change in the FTIR spectra of the nanoparticles upon introduction to clay.
Resumo:
The synthesis of a photolabile derivative of inositol-1,4,5-trisphosphate (IP3) is described. This new caged second messenger (6-ortho-nitroveratryl)-IP3 (6-NV-IP3) has an extinction coefficient of 5000 M(-1) cm(-1) at 350 nm, and a quantum yield of photolysis of 0.12. Therefore, 6-NV-IP3 is photolyzed with UV light about three times more efficiently than the widely used P(4(5))-1-(2-nitrophenyl)ethyl-caged IP3 (NPE-IP3). 6-NV-IP3 has a two-photon cross-section of about 0.035 GM at 730 nm. This absorbance is sufficiently large for effective two-photon excitation in living cells at modest power levels. Using near-IR light (5 mW, 710 nm, 80 MHz, pulse-width 70 fs), we produced focal bursts of IP3 in HeLa cells, as revealed by laser-scanning confocal imaging of intracellular Ca2+ concentrations. Therefore, 6-NV-IP3 can be used for efficient, subcellular photorelease of IP3, not only in cultured cells but also, potentially, in vivo. It is in the latter situation that two-photon photolysis should reveal its true forte.
Resumo:
Bidirectional ITP in fused-silica capillaries double-coated with Polybrene and poly-(vinylsulfonate) is a robust approach for analysis of low-molecular-mass compounds. EOF towards the cathode is strong (mobility >4.0 x 10(-8) m(2)/Vs) within the entire pH range investigated (2.40-8.08), dependent on ionic strength and buffer used and, at constant ionic strength, higher at alkaline pH. Electrokinetic separations and transport in such coated capillaries can be described with a dynamic computer model which permits the combined simulation of electrophoresis and electroosmosis in which the EOF is predicted either with a constant (i.e. pH- and ionic strength-independent) or a pH- and ionic strength-dependent electroosmotic mobility. Detector profiles predicted by computer simulation agree qualitatively well with bidirectional isotachopherograms that are monitored with a setup comprising two axial contactless conductivity detectors and a UV absorbance detector. The varying EOF predicted with a pH- and ionic strength-dependent electroosmotic mobility can be regarded as being realistic.
Resumo:
DNA mimics containing non-nucleosidic pyrene building blocks are described. The modified oligomers form stable hybrids, although a slight reduction in hybrid stability is observed in comparison to the unmodified DNA duplex. The nature of the interaction between the pyrene residues in single and double stranded oligomers is analyzed spectroscopically. Intra- and inter-strand stacking interactions of pyrenes are monitored by UV-absorbance as well as fluorescence spectroscopy. Excimer formation is observed in both single and double strands. In general, intrastrand excimers show fluorescence emission at shorter wavelengths (approx. 5-10 nm) than excimers formed by interstrand interactions. The existence of two different forms of excimers (intra- vs. interstrand) is also revealed in temperature dependent UV-absorbance spectra. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
As awareness of potential human and environmental impacts from toxins has increased, so has the development of innovative sensors. Bacteriorhodopsin (bR) is a light activated proton pump contained in the purple membrane (PM) of the bacteria Halobacterium salinarum. Bacteriorhodopsin is a robust protein which can function in both wet and dry states and can withstand extreme environmental conditions. A single electron transistor(SET) is a nano-scale device that exploits the quantum mechanical properties of electrons to switch on and off. SETs have tremendous potential in practical applications due to their size, ultra low power requirements, and electrometer-like sensitivity. The main goal of this research was to create a bionanohybrid device by integrating bR with a SET device. This was achieved by a multidisciplinary approach. The SET devices were created by a combination of sputtering, photolithography, and focused ion beam machining. The bionanomaterial bacteriorhodopsin was created through oxidative fermentation and a series of transmembrane purification processes. The bR was then integrated with the SET by electrophoretic deposition, creating a bionanohybrid device. The bionanohybrid device was then characterized using a semiconductor parametric analyzer. Characterization demonstrated that the bR modulated the operational characteristics of the SET when bR was activated with light within its absorbance spectrum. To effectively integrate bacteriorhodopsin with microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), it is critical to know the electrical properties of the material and to understand how it will affect the functionality of the device. Tests were performed on dried films of bR to determine if there is a relationship between inductance, capacitance, and resistance (LCR) measurements and orientation, light-on/off, frequency, and time. The results indicated that the LCR measurements of the bR depended on the thickness and area of the film, but not on the orientation, as with other biological materials such as muscle. However, there was a transient LCR response for both oriented and unoriented bR which depended on light intensity. From the impedance measurements an empirical model was suggested for the bionanohybrid device. The empirical model is based on the dominant electrical characteristics of the bR which were the parallel capacitance and resistance. The empirical model suggests that it is possible to integrate bR with a SET without influencing its functional characteristics.
Resumo:
Presented here, is the work done with a series of binucleating ligands based on phosphine and phosphine oxide appended p-hydroquinones and their reactions towards various metals sources. The long term goal of the project was to produce coordination polymers that would have novel electronic, magnetic, and optical properties which would be of use in the field of molecular electronics. Binucleating ligands contained a p-hydroquinone motif in which various phosphine- and phosphine oxide substituents have been placed in the ortho position relative to each of the hydroxy position were synthesized. A previously published synthetic method for such lugands utilized n-BuLi to form a phenyl lithium intermediate which was quenched with chlorodiphenylphosphine. This technique was also used to produce a ligand with diisopropylphosphine groups. Phosphine ligands, containing the same structural motif, were also generated using LDA as the lithiating agent. This technique was found to be higher yielding. Phosphine chalcogenide ligands were accessed by further oxidizing the low valent phosphorous centers with either hydrogen peroxide or with elemental sulfur. These ligands were characterized using multinuclear NMR, low and high resolution mass spectroscopy, FTIR, and single crystal X-ray diffraction. Their electrochemical properties were explored with cyclic voltammetry. The phosphine appended ligands were used in the synthesis of a several bimetallic complexes. It was found that the ligands readily reacted with NiCp2 and NiCp*2, displacing one of the cyclopentadiene (Cp) or pentamethylcyclopentadiene (Cp*) rings. A cyclopentadiene complexes, containing diisopropylphine, was readily oxidized by[FeCp2]PF6 to give a NMR silent mixed valence complex. Cyclic voltammetry of these complexes showed a number of reversible waves with a large potential separation. The mixed valence compounds also showed a large absorbance band in the NIR region which was assigned to be an intervalence charge transfer. The cyclic voltammetry and NIR spectroscopy suggest that these systems are very capable of efficient metal-to-metal charge transfer. These complexes were characterized by multinuclear NMR, single crystal X-ray diffraction, UV/VIS-NIR spectroscopy and elemental analysis. The phosphine oxide ligands were reacted with a variety of different metal sources but limited success was gained in obtaining single crystals, allowing structural characterization of these compounds. Single crystals were obtained from products generated by reacting the diphenylphosphine oxide ligand with (Bipy)Cu(NO3)2 and Cu(NO3)2. In all cases the ligand had been further oxidized to a 2,5-dihydroxy-1,4-benzoquinone motif. In the reaction between the diphenylphosphine oxide ligand and (Bipy)Cu(NO3)2 it was found that the phosphine oxide moiety was involved with intermolecular coordination leading to the formation of a one-dimensional polymer composed of a series of bimetallic complexes tethered together. When NaSbF6 was present in the reaction with (Bipy)Cu(NO3)2 a unique tetrametallic complex was formed. Here the phospine oxide moiety was oriented so that two bimetallic complexes were bound together. If only Cu(NO3)2 was present, a two-dimensional polymeric sheet was formed where the ligand was present in two different coordination modes. The electronic properties of these complexes remained to be assessed.
Resumo:
Nitric oxide has the potential to greatly improve intravascular measurements by locally inhibiting thrombus formation and dilating blood vessels. pH, the partial pressure of oxygen, and the partial pressure of carbon dioxide are three arterial blood parameters that are of interest to clinicians in the intensive care unit that can benefit from an intravascular sensor. This work explores fabrication of absorbance and fluorescence based pH sensing chemistry, the sensing chemistries' compatibility with nitric oxide, and a controllable nitric oxide releasing polymer. The pH sensing chemistries utilized various substrates, dyes, and methods of immobilization. Absorbance sensing chemistries used sol-gels, fumed silica particles, mesoporous silicon oxide, bromocresol purple, phenol red, bromocresol green, physical entrapment, molecular interactions, and covalent linking. Covalently linking the dyes to fumed silica particles and mesoporous silicon oxide eliminated leaching in the absorbance sensing chemistries. The structures of the absorbance dyes investigated were similar and bromocresol green in a sol-gel was tested for compatibility with nitric oxide. Nitric oxide did not interfere with the use of bromocresol green in a pH sensor. Investigated fluorescence sensing chemistries utilized silica optical fibers, poly(allylamine) hydrogel, SNARF-1, molecular interactions, and covalent linking. SNARF-1 covalently linked to a modified poly(allylamine) hydrogel was tested in the presence of nitric oxide and showed no interference from the nitric oxide. Nitric oxide release was controlled through the modulation of a light source that cleaved the bond between the nitric oxide and a sulfur atom in the donor. The nitric oxide donor in this work is S-nitroso-N-acetyl-D-penicillamine which was covalently linked to a silicone rubber made from polydimethylsiloxane. It is shown that the surface flux of nitric oxide released from the polymer films can be increased and decreased by increasing and decreasing the output power of the LED light source. In summary, an optical pH sensing chemistry was developed that eliminated the chronic problem of leaching of the indicator dye and showed no reactivity to nitric oxide released, thereby facilitating the development of a functional, reliable intravascular sensor.
Resumo:
The use of capillary zone electrophoresis (CZE) with indirect absorbance detection for the analysis of ethyl sulfate (EtS) in serum and urine was investigated. EtS is a direct metabolite of ethanol employed as marker for recent alcohol consumption. Fused-silica capillaries of 60 cm total length were either coated with cetyltrimethylammonium bromide (CTAB, 50 microm I.D. capillary) or poly(diallyldimethylammonium chloride) (PDADMAC, 100 microm I.D. capillary) to allow CZE analyses to be performed with reversed polarity. At pH 2.2 with a maleic acid/phthalic acid background electrolyte, both approaches provided reliable EtS serum levels down to 0.2 mg L(-1) (1.6 microM) for the analysis of solid-phase extracts that were prepared after chloride precipitation. Analysis of urines diluted to a conductivity of 5 S m(-1) and analyzed in the two capillary formats resulted in limits of quantification (LOQs) of 2 and 1 mg L(-1), respectively. With urines adjusted to 10 S m(-1) via dilution or condensation, an LOQ of 0.6 mg L(-1) (4.8 microM) was obtained in the CTAB coated capillary whereas in the PDADMAC-coated capillary of equal length not all matrix components were resolved from EtS. The developed assays are robust and suitable to monitor EtS in samples of individuals who consumed as little as one standard drink of an alcoholic beverage containing about 14 g of ethanol.
Resumo:
OBJECTIVES: Dental erosion, the chemical dissolution of enamel without bacterial involvement, is a rarely reported manifestation of gastroesophageal reflux disease (GERD), as well as of recurrent vomiting and dietary habits. It leads to loss of tooth substance, hypersensitivity, functional impairment, and even tooth fracture. To date, dental erosions have been assessed using only very basic visual methods, and no evidence-based guidelines or studies exist regarding the prevention or treatment of GERD-related dental erosions. METHODS: In this randomized, double-blind study, we used optical coherence tomography (OCT) to quantify dental tissue demineralization and enamel loss before and after 3 weeks of acid-suppressive treatment with esomeprazole 20 mg b.i.d. or placebo in 30 patients presenting to the Berne University Dental Clinic with advanced dental erosions and abnormal acid exposure by 24-h esophageal pH manometry (defined as >4% of the 24-h period with pH<4). Enamel thickness, reflectivity, and absorbance as measures of demineralization were quantified by OCT before and after therapy at identical localizations on teeth with most severe visible erosions as well as several other predefined changes in teeth. RESULTS: The mean+/-s.e.m. decrease of enamel thickness of all teeth before and after treatment at the site of maximum exposure was 7.2+/-0.16 black trianglem with esomeprazole and 15.25+/-0.17black trianglem with placebo (P=0.013), representing a loss of 0.3% and 0.8% of the total enamel thickness, respectively. The change in optical reflectivity to a depth of 25 black trianglem after treatment was-1.122 +/-0.769 dB with esomeprazole and +2.059+/-0.534 dB with placebo (P 0.012), with increased reflectivity signifying demineralization. CONCLUSIONS: OCT non-invasively detected and quantified significantly diminished progression of dental tissue demineralization and enamel loss after only 3 weeks of treatment with esomeprazole 20 mg b.i.d. vs. placebo. This suggests that esomeprazole may be useful in counteracting progression of GERD-related dental erosions. Further validation of preventative treatment regimens using this sensitive detection method is required, including longer follow-up and correlation with quantitative reflux measures.
Resumo:
Ethyl glucuronide (EtG) is a marker of recent alcohol consumption. For the optimization of the analysis of EtG by CZE with indirect absorbance detection, the use of capillaries with permanent and dynamic wall coatings, the composition of the BGE, and various sample preparation procedures, including dilution with water, ultrafiltration, protein precipitation, and SPE, were investigated. Two validated screening assays for the determination of EtG in human serum, a CZE-based approach and an enzyme immunoassay (EIA), are described. The CZE assay uses a coated capillary, 2,4-dimethylglutaric acid as an internal standard, and a pH 4.65 BGE comprising 9 mM nicotinic acid, epsilon-aminocaproic acid and 10% v/v ACN. Proteins are removed via precipitation with ACN prior to analysis and the LOQ is 0.50 mg/L. The EIA is based upon commercial reagents which are promoted for the determination of urinary EtG. Krebs-Ringer solution containing 5% BSA is used as a calibration matrix. All samples are ultrafiltered prior to analysis of the ultrafiltrate on a Mira Plus analyzer. Assay calibration ranged between 0 and 2 mg/L and the upper reference limit was determined to be 0.05 mg/L. Both assays proved to be suitable for the analysis of samples from different individuals. For EtG levels above 0.50 mg/L, good agreement was observed for the comparison of the results of the two methods.
Resumo:
The haem detoxification pathway of the malaria parasite Plasmodium falciparum is a potential biochemical target for drug development. Free haem, released after haemoglobin degradation, is polymerized by the parasite to form haemozoin pigment. Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2) has been implicated as the catalytic scaffold for detoxification of haem in the malaria parasite. Previously we have shown that a hexapeptide repeat sequence (Ala-His-His-Ala-Ala-Asp), which appears 33 times in Pfhrp-2, may be the major haem binding site in this protein. The haem binding studies carried out by ourselves indicate that up to 18 equivalents of haem could be bound by this protein with an observed K(d) of 0.94 microM. Absorbance spectroscopy provides evidence that chloroquine is capable of extracting haem bound to Pfhrp-2. This was supported by the K(d) value, of 37 nM, observed for the haem-chloroquine complex. The native PAGE studies reveal that the formation of the haem-Pfhrp-2 complex is disrupted by chloroquine. These results indicate that chloroquine may be acting by inhibiting haem detoxification/binding to Pfhrp-2. Moreover, the higher affinity of chloroquine for haem than Pfhrp-2 suggests a possible mechanism of action for chloroquine; it may remove the haem bound to Pfhrp-2 and form a complex that is toxic to the parasite.
Resumo:
ABSTRACT: Fourier transform infrared spectroscopy (FTIRS) can provide detailed information on organic and minerogenic constituents of sediment records. Based on a large number of sediment samples of varying age (0�340 000 yrs) and from very diverse lake settings in Antarctica, Argentina, Canada, Macedonia/Albania, Siberia, and Sweden, we have developed universally applicable calibration models for the quantitative determination of biogenic silica (BSi; n = 816), total inorganic carbon (TIC; n = 879), and total organic carbon (TOC; n = 3164) using FTIRS. These models are based on the differential absorbance of infrared radiation at specific wavelengths with varying concentrations of individual parameters, due to molecular vibrations associated with each parameter. The calibration models have low prediction errors and the predicted values are highly correlated with conventionally measured values (R = 0.94�0.99). Robustness tests indicate the accuracy of the newly developed FTIRS calibration models is similar to that of conventional geochemical analyses. Consequently FTIRS offers a useful and rapid alternative to conventional analyses for the quantitative determination of BSi, TIC, and TOC. The rapidity, cost-effectiveness, and small sample size required enables FTIRS determination of geochemical properties to be undertaken at higher resolutions than would otherwise be possible with the same resource allocation, thus providing crucial sedimentological information for climatic and environmental reconstructions.
Resumo:
Partially functional forms of iso-1-cytochrome c from Saccharomyces cerevisiae were obtained by replacements of the evolutionarily conserved proline 71 with valine, isoleucine and threonine (Ernst et.al.,1985). Pro-71 lies at the juncture of two short helical regions and is believed to be important for proper local polypeptide chain folding within the iso-1-cytochrome c structure.^ To study folding in the absence of intermolecular disulfide dimer formation the free sulfhydryl group of Cys-102 was modified in both wild type and mutant proteins with an alkylating reagent, methyl methanethiosulfonate. Spectral analysis of the wild type and mutant proteins shows that the native-like functional (or partially functional) folded structure of cytochrome c is retained in the chemically modified derivatives. The replacement of Pro-71 with valine, isoleucine or threonine reduces the intensity of the 696 nm absorbance band which is an indicator of the Met-80 ligation to the heme. Thermal stability and guanidine hydrochloride unfolding studies of the mutant proteins shows a destabilization of the protein as a result of mutation. The degree of destabilization depends on the chemical nature of the substituent amino acid in the mutant protiens.^ Kinetics of folding/unfolding reactions of the proteins were monitored by fluorescence changes using stopped flow mixing to obtain guanidine hydrochloride concentration jumps ending below, within, and above the transition zone. The replacement of Pro-71 alters the rate on one of the fastest phases, $\tau\sb3$, while the two other phases, $\tau\sb1$ & $\tau\sb2$, remain the same.^ Slow refolding kinetic studies indicate that replacement of Pro-71 does not completely eliminate the absorbance or fluorescence detected slow phases leading to the conclusion that Pro-71 is not involved in the generation of the slow phases in the folding kinetics of iso-1-cytochrome c.^ The alkaline conformational change involving the disappearance of the 696 nm absorbance band occurs with increasing pH in the alkaline pH region (Davis et al., 1974). The apparent pK of this conformational change in mutant proteins is shifted as much as two pH units compared to wild type. The equilibrium and kinetic data of alkaline transition for the wild type follows a simple mechanism proposed by Davis et al., (1974) for horse heart cytochrome c. A more complex mechanism is proposed for the behavior of the mutant proteins. ^