886 resultados para ATM desdentado


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dual carbon isotope anal. of marine aerosol samples has been performed for the first time demonstrating a potential in org. matter apportionment between three principal sources: marine, terrestrial (non-fossil) and fossil fuel due to unique isotopic signatures. The results presented here, utilizing combinations of dual carbon isotope anal., provides conclusive evidence of a dominant biogenic org. fraction to org. aerosol over biol. active oceans. In particular, the NE Atlantic, which is also subjected to notable anthropogenic influences via pollution transport processes, was found to contain 80 % org. aerosol matter of biogenic origin directly linked to plankton emissions. The remaining carbonaceous aerosol was of terrestrial origin. By contrast, for polluted air advected out from Europe into the NE Atlantic, the source apportionment is 30 % marine biogenic, 40 % fossil fuel, and 30 % continental non-fossil fuel. The dominant marine org. aerosol source in the atm. has significant implications for climate change feedback processes. [on SciFinder(R)]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results from the international field campaign DAURE (Detn. of the sources of atm. Aerosols in Urban and Rural Environments in the Western Mediterranean), with the objective of apportioning the sources of fine carbonaceous aerosols. Submicron fine particulate matter (PM1) samples were collected during Feb.-March 2009 and July 2009 at an urban background site in Barcelona (BCN) and at a forested regional background site in Montseny (MSY). We present radiocarbon (14C) anal. for elemental and org. carbon (EC and OC) and source apportionment for these data. We combine the results with those from component anal. of aerosol mass spectrometer (AMS) measurements, and compare to levoglucosan-based ests. of biomass burning OC, source apportionment of filter data with inorg. compn. + EC + OC, submicron bulk potassium (K) concns., and gaseous acetonitrile concns. At BCN, 87 % and 91 % of the EC on av., in winter and summer, resp., had a fossil origin, whereas at MSY these fractions were 66 % and 79 %. The contribution of fossil sources to org. carbon (OC) at BCN was 40 % and 48 %, in winter and summer, resp., and 31 % and 25 % at MSY. The combination of results obtained using the 14C technique, AMS data, and the correlations between fossil OC and fossil EC imply that the fossil OC at Barcelona is ∼47 % primary whereas at MSY the fossil OC is mainly secondary (∼85 %). Day-to-day variation in total carbonaceous aerosol loading and the relative contributions of different sources predominantly depended on the meteorol. transport conditions. The estd. biogenic secondary OC at MSY only increased by ∼40 % compared to the order-of-magnitude increase obsd. for biogenic volatile org. compds. (VOCs) between winter and summer, which highlights the uncertainties in the estn. of that component. Biomass burning contributions estd. using the 14C technique ranged from similar to slightly higher than when estd. using other techniques, and the different estns. were highly or moderately correlated. Differences can be explained by the contribution of secondary org. matter (not included in the primary biomass burning source ests.), and/or by an over-estn. of the biomass burning OC contribution by the 14C technique if the estd. biomass burning EC/OC ratio used for the calcns. is too high for this region. Acetonitrile concns. correlate well with the biomass burning EC detd. by 14C. K is a noisy tracer for biomass burning. [on SciFinder(R)]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low mol. wt. (LMW) org. acids are important and ubiquitous chem. constituents in the atm. A comprehensive study of the chem. compn. of pptn. was carried out from June 2007 to June 2008 at a rural site in Anshun, in the west of Guizhou Province, China. During this period, 118 rainwater samples were collected and the main LMW carboxylic acids were detd. using ion chromatog. The av. pH of rainwater was 4.89 which is a typical acidic value. The most abundant carboxylic acids were formic acid (vol. wt. mean concn.: 8.77 μmol L-1) and acetic acid (6.90 μmol L-1), followed by oxalic acid (2.05 μmol L-1). The seasonal variation of concns. and wet deposition fluxes of org. acids indicated that direct vegetation emissions were the main sources of the org. acids. Highest concns. were obsd. in winter and were ascribed to the low winter rainfall and the contribution of other air pollution sources northeast of the study area. The ratio of formic and acetic acids in the pptn. ([F/A]T) was proposed as an indicator of pollution source. This suggested that the pollution resulted from direct emissions from natural or anthropogenic sources. Comparison with acid pptn. in other urban and rural areas in Guizhou showed that there was a decreasing contribution of LMW org. acids to free acidity and all anions in rainwater from urban to remote rural areas. Consequently, it is necessary to control emissions of org. acids to reduce the frequency of acid rain, esp. in rural and remote areas. [on SciFinder(R)]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the advent of automobiles, alcohol has been considered a possible engine fuel1,2. With the recent increased concern about the high price of crude oil due to fluctuating supply and demand and environmental issues, interest in alcohol based fuels has increased2,3. However, using pure alcohols or blends with conventional fuels in high percentages requires changes to the engine and fuel system design2. This leads to the need for a simple and accurate conventional fuels-alcohol blends combustion models that can be used in developing parametric burn rate and knock combustion models for designing more efficient Spark Ignited (SI) engines. To contribute to this understanding, numerical simulations were performed to obtain detailed characteristics of Gasoline-Ethanol blends with respect to Laminar Flame Speed (LFS), autoignition and Flame-Wall interactions. The one-dimensional premixed flame code CHEMKIN® was applied to simulate the burning velocity and autoignition characteristics using the freely propagating model and closed homogeneous reactor model respectively. Computational Fluid Dynamics (CFD) was used to obtain detailed flow, temperature, and species fields for Flame-wall interactions. A semi-detailed validated chemical kinetic model for a gasoline surrogate fuel developed by Andrae and Head4 was used for the study of LFS and Autoignition. For the quenching study, a skeletal chemical kinetic mechanism of gasoline surrogate, having 50 species and 174 reactions was used. The surrogate fuel was defined as a mixture of pure n-heptane, isooctane, and toluene. For LFS study, the ethanol volume fraction was varied from 0 to 85%, initial pressure from 4 to 8 bar, initial temperature from 300 to 900K, and dilution from 0 to 32%. Whereas for Autoignition study, the ethanol volume fraction was varied between 0 to 85%, initial pressure was varied between 20 to 60 bar, initial temperature was varied between 800 to 1200K, and the dilution was varied between 0 to 32% at equivalence ratios of 0.5, 1.0 and 1.5 to represent the in-cylinder conditions of a SI engine. For quenching study three Ethanol blends, namely E0, E25 and E85 are described in detail at an initial pressure of 8 atm and 17 atm. Initial wall temperature was taken to be 400 K. Quenching thicknesses and heat fluxes to the wall were computed. The laminar flame speed was found to increase with ethanol concentration and temperature but decrease with pressure and dilution. The autoignition time was found to increase with ethanol concentration at lower temperatures but was found to decrease marginally at higher temperatures. The autoignition time was also found to decrease with pressure and equivalence ratio but increase with dilution. The average quenching thickness was found to decrease with an increase in Ethanol concentration in the blend. Heat flux to the wall increased with increase in ethanol percentage in the blend and at higher initial pressures. Whereas the wall heat flux decreased with an increase in dilution. Unburned Hydrocarbon (UHC) and CO % was also found to decrease with ethanol concentration in the blend.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A silicon-based microcell was fabricated with the potential for use in in-situ transmission electron microscopy (TEM) of materials under plasma processing. The microcell consisted of 50 nm-thick film of silicon nitride observation window with 60μm distance between two electrodes. E-beam scattering Mont Carlo simulation showed that the silicon nitride thin film would have very low scattering effect on TEM primary electron beam accelerated at 200 keV. Only 4.7% of primary electrons were scattered by silicon nitride thin film and the Ar gas (60 μm thick at 1 atm pressure) filling the space between silicon nitride films. Theoretical calculation also showed low absorption of high-energy e-beam electrons. Because the plasma cell needs to survive the high vacuum TEM chamber while holding 1 atm internal pressure, a finite element analysis was performed to find the maximum stress the low-stress silicon nitride thin film experienced under pressure. Considering the maximum burst stress of low-stress silicon nitride thin film, the simulation results showed that the 50 nm silicon nitride thin film can be used in TEM under 1 atm pressure as the observation window. Ex-situ plasma generation experiment demonstrated that air plasma can be ignited at DC voltage of 570. A Scanning electron microscopy (SEM) analysis showed that etching and deposition occurred during the plasma process and larger dendrites formed on the positive electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artemis, a member of the SNM1 gene family, is one of the six known components of the non-homologous end joining pathway. It is a multifunctional phospho-protein that has been shown to be modified by the phosphatidylinositol 3-kinases (PIKs) DNA-PKcs, ATM and ATR in response to a variety of cellular stresses. Artemis has important roles in V(D)J recombination, DNA double strand breaks repair and damage-induced cell-cycle checkpoint regulation. The detailed mechanism by which Artemis mediates its functions in these cellular pathways needs to be further elucidated. My work presented here demonstrates a new function for Artemis in cell cycle regulation as a component of Cullin-based E3 ligase complex. I show that Artemis interacts with Cul4A-DDB1 ligase complex via a direct interaction with the substrate-specific receptor DDB2, and deletion mapping analysis shows that part of the Snm1 domain of Artemis is responsible for this interaction. Additionally, Artemis also interacts with p27, a substrate of Cul4A-DDB1 complex, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. Furthermore, I show that the regulation of p27 by Artemis and DDB2 is critical for cell cycle progression in normally proliferating cells and in response to serum withdrawal. Finally, I provide evidence showing that Artemis may be also a part of other Cullin-based E3 ligase complexes, and it has a role in controlling p27 levels in response to different cellular stress, such as UV irradiation. These findings suggest a novel pathway to regulate p27 protein level and define a new function for Artemis as an effector of Cullin-based E3-ligase mediated ubiquitylation, and thus, a cell cycle regulator in proliferating cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viral invasion of the central nervous system (CNS) and development of neurological symptoms is a characteristic of many retroviruses. The mechanism by which retrovirus infection causes neurological dysfunction has yet to be fully elucidated. Given the complexity of the retrovirus-mediated neuropathogenesis, studies using small animal models are extremely valuable. Our laboratory has used a mutant moloney murine leukemia retrovirus, ts1-mediated neurodegneration. We hypothesize that astrocytes play an important role in ts1-induced neurodegeneration since they are retroviral reservoirs and supporting cells for neurons. It has been shown that ts1 is able to infect astrocytes in vivo and in vitro. Astrocytes, the dominant cell population in the CNS, extend their end feet to endothelial cells and neuronal synapse to provide neuronal support. Signs of oxidative stress in the ts1-infected CNS have been well-documented from previous studies. After viral infection, retroviral DNA is generated from its RNA genome and integrated into the host genome. In this study, we identified the life cycle of ts1 in the infected astrocytes. During the infection, we observed reactive oxygen species (ROS) upregulations: one at low levels during the early infection phase and another at high levels during the late infection phase. Initially we hypothesized that p53 might play an important role in ts1-mediated astrocytic cell death. Subsequently, we found that p53 is unlikely to be involved in the ts1-mediated astrocytic cell death. Instead, p53 phosphorylation was increased by the early ROS upregulation via ATM, the protein encoded by the ataxia-telangiectasia (A-T) mutated gene. The early upregulation of p53 delayed viral gene expression by suppressing expression of the catalytic subunit of NADPH oxidase (NOX). We further demonstrated that the ROS upregulation induced by NOX activation plays an important role in establishing retroviral genome into the host. Inhibition of NOX decreased viral replication and delayed the onset of pathological symptoms in ts1-infected mice. These observations lead us to conclude that suppression of NOX not only prevents the establishment of the retrovirus but also decreases oxidative stress in the CNS. This study provides us with new perspectives on the retrovirus-host cell interaction and sheds light on retrovirus-induced neurodegeneration as a result of the astrocyte-neuron interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human cancer develops as a result of accumulation of mutations in oncogenes and tumor suppressor genes. Zinc finger protein 668 (ZNF668) has recently been identified and validated as one of the highly mutated genes in breast cancer, but its function is entirely unknown. Here, we report two major functions of ZNF668 in cancer development. (1) ZNF668 functions as a tumor suppressor by regulating p53 protein stability and function. We demonstrate that ZNF668 is a nucleolar protein that physically interacts with both MDM2 and p53. By binding to MDM2, ZNF668 regulates MDM2 autoubiquitination and prevents MDM2-mediated p53 ubiquitination and degradation; ZNF668 deficiency impairs DNA damage-induced p53 stabilization. Notably, ZNF668 effectively suppresses breast cancer cell proliferation and transformation in vitro and tumorigenicity in vivo. Consistently, ZNF668 knockdown readily transforms normal mammary epithelial cells. Together, our studies identify ZNF668 as a novel breast tumor suppressor gene that acts at least in part by regulating the stability and function of p53. (2) ZNF668 functions as a DNA repair protein by regulating histone acetylation. DNA repair proteins need to access the chromatin by chromatin modification or remodeling to use DNA template within chromatin. Dynamic posttranslational modifications of histones are critical for cells to relax chromatin in DNA repair. However, the precise underlying mechanism mediating enzymes responsible for these modifications and their recruitment to DNA lesions remains poorly understood. We observed ZNF668 depletion causes impaired chromatin relaxation as a result of impaired DNA-damage induced histone H2AX hyper-acetylation. This results in the decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after DNA damage, albeit with the presence of a functional ATM/ATR dependent DNA-damage signaling cascade. Importantly, the impaired loading of repair proteins and the defect in DNA repair in ZNF668-deficient cells can be counteracted by chromatin relaxation, indicating that the DNA-repair defect that was observed in the absence of ZNF668 is due to impeded chromatin accessibility at sites of DNA breaks. Our findings therefore identify ZNF668 as a key molecule that links chromatin relaxation with response to DNA damage in the control of DNA repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of E2F transcription factors in the processes of proliferation and apoptosis are well established. E2F1, but not other E2F family members, is also phosphorylated and stabilized in response to various forms of DNA damage to regulate the expression of cell cycle and pro-apoptotic genes. E2F1 also relocalizes and forms foci at sites of DNA double-strand breaks but the function of E2F1 at sites of damage is still unknown. Here I reveal that E2F1 deficiency leads to increased spontaneous DNA break and impaired recovery following exposure to ionizing radiation. In response to DNA double-strand breaks, NBS1 phosphorylation and foci formation are defective in cells lacking E2F1, but NBS1 expression levels are unaffected. Moreover, it was observed that an association between NBS1 and E2F1 is increased in response to DNA damage, suggesting that E2F1 may promote NBS1 foci formation through a direct or indirect interaction at sites of DNA breaks. E2F1 deficient cells also display impaired foci formation of RPA and Rad51, which suggests a defect in DNA end resection and formation of single-stranded DNA at DNA double-strand breaks. I also found E2F1 status affects foci formation of the histone acetyltransferase GCN5 in response to DNA double-strand breaks. E2F1 is phosphorylated at serine 31 (serine 29 in mouse) by the ATM kinase as part of the DNA damage response. To investigate the importance of this event, our lab developed an E2F1 serine 29 mutant mouse model. I find that E2F1 serine 29 mutant cells show loss of E2F1 foci formation in response to DNA double-strand breaks. Furthermore, DNA repair and NBS1 foci formation are impaired in E2f1S29A/S29A cells. Taken together, my results indicate novel roles for E2F1 in the DNA damage response, which may directly promote DNA repair and genome maintenance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein of the hnRNP family, that has been discovered as fused to transcription factors, through chromosomal translocations, in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis (ALS) [1]. To date, FUS/TLS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS/TLS to genome stability control and DNA damage response. In fact, mice lacking FUS/TLS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and in response to double-strand breaks, FUS/TLS gets phosphorylated by the protein kinase ATM [3,4,5]. Furthermore, the inducible depletion of FUS/TLS in a neuroblastoma cell line (SH-SY5Y FUS/TLS TET-off iKD) subjected to genotoxic stress (IR) resulted in an increased phosphorylation of γH2AX respect to control cells, suggesting an higher activation of the DNA damage response. The study aims to investigate the specific role of FUS/TLS in DNA damage response through the characterization of the proteomic profile of SH-SY5Y FUS/TLS iKD cells subjected to DNA damage stress, by mass spectrometry-based quantitative proteomics (e.g. SILAC). Preliminary results of mass spectrometric identification of FUS/TLS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS/TLS protein, highlighted the interactions with several proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS/TLS is involved in this pathway, even thou its exact role still need to be addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several important fundamental and applied problems require a quantification of slow rates of groundwater flow. To resolve these problems helium appears to be a promising tracer. In this contribution we discuss a new approach, which gives the helium inventory in a rock – pore water system by using the relevant mineral record, i.e., without extraction and investigation of the porewater samples. Some U- and Th-poor minerals such as quartz (quartz separates from Permo-Carboniferous Formation, sandstone–shale interlayering, Molasses Basin, Northern Switzerland, hereafter PCF, are used in this study) contain excessive helium having migrated into their internal helium-accessible volume (HAV) from the surrounding porewater [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497–1514]. These volumes are estimated by using helium as a nano-size penetrating tool, i.e., by saturation of the minerals with helium under controlled pressure–temperature conditions and subsequent measurements of the helium-saturated concentrations. In the quartz separates HAV/total volume ratios vary from 0.017% to 0.16%; along with the measured initial (unsaturated) He concentration the HAV gives the internal helium pressure, the mean value obtained for 7 samples (25 sample aliquots) is P=0.45F0.15 atm (1 r). The product of helium pressure and solubility (7.35_10_3 cc STP He/cc H2O for the temperature and salinity of PCF aquifers reported in [F.J. Pearson, W. Balderer, H.H. Loosli, B.E. Lehmann, A. Matter, T. Peters, H. Schmassmann, A. Gautschi, Applied Isotope Hydrogeology–A Case Study in Northern Switzerland, Elsevier Amsterdam, 1991, 439 pp.]) is the mineral-derived He concentration in the respective porewater, CPW=0.0035F0.0017 cc He/cc H2O. This value is in full accord with measured He concentrations in PCF aquifers, CPCF, varying from 0.0045 to 0.0016 cc He/cc H2O. This agreement validates the proposed approach and also shows that the mineral–porewater helium–concentration equilibrium has been established. Indeed, estimates of the He-migration rates through our quartz samples show that in ~6000 years the internal pressure should equilibrate with He-concentration in related porewater of PCF, and this time interval is short compared to independent estimates [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497–1514]. The helium inventory in the rock–porewater assemblage shows that helium abundance in pore waters is indeed important. In shale samples (with ~15% porosity) porewaters contain more helium than the host minerals altogether. Porewater heliumconcentration profiles, available from the mineral record, along with helium production rates are input parameters allowing model(s) of helium migration through a hydrological structure to be developed. Quite high helium concentrations in PCF porewaters imply slow removal mechanisms, which will be discussed elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma), a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, including RNA metabolism, microRNA biogenesis and DNA repair. However, the precise cellular function of FUS remains unclear. Recently, mutations in the FUS gene have been found in ∼5% of familial Amyotrophic Lateral Sclerosis, a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are investigating the effects of DNA damage both in the presence or in the absence of FUS. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line expressing a doxycycline-induced shRNA targeting FUS, which specifically depletes the protein. We have found that FUS depletion induces an activation of the DNA damage response (DDR). However, treatment with genotoxic agents did not induce any strong changes in ATM (Ataxia Telangiectasia Mutated)-mediated DDR signaling. Interestingly, genotoxic treatment results in changes in the subcellular localization of FUS in normal cells. We are currently exploring on one hand the mechanism by which FUS depletion leads to DNA damage, and on the other the functional significance of FUS relocalization after genotoxic stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [1]. To date, FUS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS to genome stability control and DNA damage response. In fact, mice lacking FUS are hypersensitive to ionizing radiation and show high levels of chromosome instability and in response to double-strand breaks, FUS gets phosphorylated by the protein kinase ATM [3, 4, 5]. Moreover, upon DNA damage stress, FUS mediates Ebp1 (ErbB3 receptor-binding protein) SUMOylation, a post-translational modification that is required for its onco-suppressive activity, by acting as SUMO E3 ligase [6]. The study aims to investigate the role of FUS in DNA damage response and SUMOylation, two cellular pathways tightly interconnected to each other. Moreover, we will exploit biochemical and mass spectrometry-based approaches in order to identify other potential substrates of the E3 SUMO ligase activity of FUS. Preliminary results of mass spectrometric identification of FUS interacting proteins, in HEK293 and SHSY5Y cells, highlighted the interaction of FUS with several proteins involved in DNA damage response and many of those have been described already as target of SUMOylation, such as XRCC5, DDX5, PARP1, Nucleophosmin, and others. These evidences strengthen the hypothesis that FUS might represent a link between these pathways, even thou its exact role still needs to be clearly addressed. [1] Vance C. et al. (2009) Science 323(5918): p. 1208-11 [2] Fiesel FC., Kahle PJ. (2011) FEBS J. 278(19): p. 3550-68 [3] Kuroda M. et al. (2000) Embo J. 19(3): p. 453-62 [4] Hicks GG. et al. (2000) Nat Genet. 24(2):p. 175-9 [5] Gardiner M. et al. (2008) Biochem J. 415(2): p. 297-307 [6] Oh SM. et al. (2010) Oncogene 29(7): p. 1017-30