961 resultados para ALTERED EXPRESSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor κB (NF-κB), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypothalamic inflammation is a common feature of experimental obesity. Dietary fats are important triggers of this process, inducing the activation of toll-like receptor-4 (TLR4) signaling and endoplasmic reticulum stress. Microglia cells, which are the cellular components of the innate immune system in the brain, are expected to play a role in the early activation of diet-induced hypothalamic inflammation. Here, we use bone marrow transplants to generate mice chimeras that express a functional TLR4 in the entire body except in bone marrow-derived cells or only in bone marrow-derived cells. We show that a functional TLR4 in bone marrow-derived cells is required for the complete expression of the diet-induced obese phenotype and for the perpetuation of inflammation in the hypothalamus. In an obesity-prone mouse strain, the chemokine CX3CL1 (fractalkine) is rapidly induced in the neurons of the hypothalamus after the introduction of a high-fat diet. The inhibition of hypothalamic fractalkine reduces diet-induced hypothalamic inflammation and the recruitment of bone marrow-derived monocytic cells to the hypothalamus; in addition, this inhibition reduces obesity and protects against diet-induced glucose intolerance. Thus, fractalkine is an important player in the early induction of diet-induced hypothalamic inflammation, and its inhibition impairs the induction of the obese and glucose intolerance phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bisphenol-A (BPA) is one of the most widespread EDCs used as a base compound in the manufacture of polycarbonate plastics. The aim of our research has been to study how the exposure to BPA during pregnancy affects weight, glucose homeostasis, pancreatic β-cell function and gene expression in the major peripheral organs that control energy flux: white adipose tissue (WAT), the liver and skeletal muscle, in male offspring 17 and 28 weeks old. Pregnant mice were treated with a subcutaneous injection of 10 µg/kg/day of BPA or a vehicle from day 9 to 16 of pregnancy. One month old offspring were divided into four different groups: vehicle treated mice that ate a normal chow diet (Control group); BPA treated mice that also ate a normal chow diet (BPA); vehicle treated animals that had a high fat diet (HFD) and BPA treated animals that were fed HFD (HFD-BPA). The BPA group started to gain weight at 18 weeks old and caught up to the HFD group before week 28. The BPA group as well as the HFD and HFD-BPA ones presented fasting hyperglycemia, glucose intolerance and high levels of non-esterified fatty acids (NEFA) in plasma compared with the Control one. Glucose stimulated insulin release was disrupted, particularly in the HFD-BPA group. In WAT, the mRNA expression of the genes involved in fatty acid metabolism, Srebpc1, Pparα and Cpt1β was decreased by BPA to the same extent as with the HFD treatment. BPA treatment upregulated Pparγ and Prkaa1 genes in the liver; yet it diminished the expression of Cd36. Hepatic triglyceride levels were increased in all groups compared to control. In conclusion, male offspring from BPA-treated mothers presented symptoms of diabesity. This term refers to a form of diabetes which typically develops in later life and is associated with obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate whether altered occlusion affects both the condylar cartilage thickness and the cytokine levels of the TMJs of rats. Thirty adult-male rats (n=30) were randomly assigned to three experimental conditions: a control group that underwent sham operations with unaltered occlusion; an FPDM group that underwent functional posterior displacement of the mandible that was induced by an incisor guiding appliance; and an iOVD group in which the increased occlusal vertical dimension was induced in the molars. The rats were subjected to the FPDM or iOVD model for 14 days and then killed. Both the right and left TMJs were removed and randomly assigned to examination with staining or immunoassay techniques. Toluidine blue staining was used to measure the thicknesses of the four layers of the articular cartilage (i.e., the fibrous, proliferating, mature, and hypertrophic layers). ELISA assays were used to assess the concentrations of the pro-inflammatory cytokines IL-1α, IL-1β, IL-6, and tumour necrosis factor (TNF-α). The measurements of the articular cartilage layers and cytokine concentrations were analyzed with ANOVA and Tukey's tests and Kruskal-Wallis and Dunn tests, respectively (α=5%). The thickness of articular cartilage in the FPDM group (0.3±0.03mm) was significantly greater than those of the control (0.2±0.01mm) and iOVD (0.25±0.03mm) groups. No significant difference was observed between the control and iOVD groups. The four articular cartilage layers were thicker in the FPDM group than in the control and iOVD groups, and the latter two groups did not differ one from each other. Both the FPDM and iOVD groups exhibited higher cytokine levels than did the control (p<0.05) group. Compared to the FPDM group, the iOVD group exhibited significantly higher levels of IL-1β and TNF-α. Both models induced inflammation in the TMJ and caused significant structural changes in the TMJ and surrounding tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing rate of papillary thyroid carcinomas that may never progress to cause symptoms or death. Predicting outcome and determining tumour aggressiveness could help diminish the number of patients submitted to aggressive treatments. We aimed to evaluate whether markers of the immune system response and of tumour-associated inflammation could predict outcome of differentiated thyroid cancer (DTC) patients. Retrospective cohort study. We studied 399 consecutive patients, including 325 papillary and 74 follicular thyroid carcinomas. Immune cell markers were evaluated using immunohistochemistry, including tumour-associated macrophages (CD68) and subsets of tumour-infiltrating lymphocytes (TIL), such as CD3, CD4, CD8, CD16, CD20, CD45RO, GRANZYME B, CD69 and CD25. We also investigated the expression of cyclooxygenase 2 (COX2) in tumour cells and the presence of concurrent lymphocytic infiltration characterizing chronic thyroiditis. Concurrent lymphocytic infiltration characterizing chronic thyroiditis was observed in 29% of the cases. Among all the immunological parameters evaluated, only the enrichment of CD8+ lymphocytes (P = 0·001) and expression of COX2 (P =0·01) were associated with recurrence. A multivariate model analysis identified CD8+ TIL/COX2 as independent risk factor for recurrence. A multivariate analysis using Cox's proportional-hazards model adjusted for the presence of concurrent chronic thyroiditis demonstrated that the presence of concurrent chronic thyroiditis had no effect on prognostic prediction mediated by CD8+ TIL and COX2. In conclusion, we suggest the use of a relatively simple pathology tool to help select cases that may benefit of a more aggressive approach sparing the majority of patients from unnecessary procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrimidine-5'-nucleotidase type I (P5'NI) deficiency is an autosomal recessive condition that causes nonspherocytic hemolytic anemia, characterized by marked basophilic stippling and pyrimidine nucleotide accumulation in erythrocytes. We herein present two African descendant patients, father and daughter, with P5'N deficiency, both born from first cousins. Investigation of the promoter polymorphism of the uridine diphospho glucuronosyl transferase 1A (UGT1A) gene revealed that the father was homozygous for the allele (TA7) and the daughter heterozygous (TA6/TA7). P5'NI gene (NT5C3) gene sequencing revealed a further change in homozygosity at amino acid position 56 (p.R56G), located in a highly conserved region. Both patients developed gallstones; however the father, who had undergone surgery for the removal of stones, had extremely severe intrahepatic cholestasis and, liver biopsy revealed fibrosis and siderosis grade III, leading us to believe that the homozygosity of the UGT1A polymorphism was responsible for the more severe clinical features in the father. Moreover, our results show how the clinical expression of hemolytic anemia is influenced by epistatic factors and we describe a new mutation in the P5'N gene associated with enzyme deficiency, iron overload, and severe gallstone formation. To our knowledge, this is the first description of P5'N deficiency in South Americans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Squamous cell carcinoma is the most common neoplasm of the larynx and glottis, and its prognosis depends on the size of the lesion, level of local invasion, cervical lymphatic spread, and presence of distant metastases. Ki-67 (MKI67) is a protein present in the core, whose function is related to cell proliferation. To evaluate the expression of marker Ki-67 in squamous cell carcinoma of the larynx and glottis and its correlation to pathological findings. Experimental study with immunohistochemistry analysis of Ki-67, calculating the percentage of the cell proliferation index in glottic squamous cell carcinomas. Sixteen cases were analyzed, with six well-differentiated and 10 poorly/moderately differentiated tumors. There was a correlation between cell proliferation index and degree of cell differentiation, with higher proliferation in poorly/moderately differentiated tumors. The cell proliferation index, as measured by Ki-67, may be useful in the characterization of histological degree in glottic squamous cell tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sickle cell disease (SCD) pathogenesis leads to recurrent vaso-occlusive and hemolytic processes, causing numerous clinical complications including renal damage. As vasoconstrictive mechanisms may be enhanced in SCD, due to endothelial dysfunction and vasoactive protein production, we aimed to determine whether the expression of proteins of the renin-angiotensin system (RAS) may be altered in an animal model of SCD. Plasma angiotensin II (Ang II) was measured in C57BL/6 (WT) mice and mice with SCD by ELISA, while quantitative PCR was used to compare the expressions of the genes encoding the angiotensin-II-receptors 1 and 2 (AT1R and AT2R) and the angiotensin-converting enzymes (ACE1 and ACE2) in the kidneys, hearts, livers and brains of mice. The effects of hydroxyurea (HU; 50-75mg/kg/day, 4weeks) treatment on these parameters were also determined. Plasma Ang II was significantly diminished in SCD mice, compared with WT mice, in association with decreased AT1R and ACE1 expressions in SCD mice kidneys. Treatment of SCD mice with HU reduced leukocyte and platelet counts and increased plasma Ang II to levels similar to those of WT mice. HU also increased AT1R and ACE2 gene expression in the kidney and heart. Results indicate an imbalanced RAS in an SCD mouse model; HU therapy may be able to restore some RAS parameters in these mice. Further investigations regarding Ang II production and the RAS in human SCD may be warranted, as such changes may reflect or contribute to renal damage and alterations in blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV) causes blood-brain barrier breakdown (BBBb). The PNV-induced excitotoxicity results from disturbances on Na(+), K(+) and Ca(2+) channels and glutamate handling. The vascular endothelial growth factor (VEGF), beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB) and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simvastatin, a competitive inhibitor of HMG-CoA reductase widely used in the treatment and prevention of hyperlipidemia-related diseases, has recently been associated to in vitro anticancer stem cell (CSC) actions. However, these effects have not been confirmed in vivo. To assess in vivo anti-CSC effects of simvastatin, female Sprague-Dawley rats with 7,12-dimethyl-benz(a)anthracene (DMBA)-induced mammary cancer and control animals were treated for 14 days with either simvastatin (20 or 40 mg/kg/day) or soybean oil (N = 60). Tumors and normal breast tissues were removed for pathologic examination and immunodetection of CSC markers. At 40 mg/kg/day, simvastatin significantly reduced tumor growth and the expression of most CSC markers. The reduction in tumor growth (80%) could not be explained solely by the decrease in CSCs, since the latter accounted for less than 10% of the neoplasia (differentiated cancer cells were also affected). Stem cells in normal, nonneoplastic breast tissues were not affected by simvastatin. Simvastatin was also associated with a significant decrease in proliferative activity but no increase in cell death. In conclusion, this is the first study to confirm simvastatin anti-CSC actions in vivo, further demonstrating that this effect is specific for neoplastic cells, but not restricted to CSCs, and most likely due to inhibition of cell proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of low-level laser therapy in muscle regeneration is still not well known. To investigate the effects of laser irradiation during muscle healing. For this purpose, 63 rats were distributed to 3 groups: non-irradiated control group (CG); group irradiated at 10 J/cm(2) (G10); and group irradiated at 50 J/cm(2) (G50). Each group was divided into 3 different subgroups (n=7), and on days 7, 14 and 21 post-injury the rats were sacrificed. Seven days post-surgery, the CG showed destroyed zones and extensive myofibrillar degeneration. For both treated groups, the necrosis area was smaller compared to the CG. On day 14 post-injury, treated groups demonstrated better tissue organization, with newly formed muscle fibers compared to the CG. On the 21(st) day, the irradiated groups showed similar patterns of tissue repair, with improved muscle structure at the site of the injury, resembling uninjured muscle tissue organization. Regarding collagen deposition, the G10 showed an increase in collagen synthesis. In the last period evaluated, both treated groups showed statistically higher values in comparison with the CG. Furthermore, laser irradiation at 10 J/cm(2) produced a down-regulation of cyclooxygenase 2 (Cox-2) immunoexpression on day 7 post-injury. Moreover, Cox-2 immunoexpression was decreased in both treated groups on day 14. Laser therapy at both fluencies stimulated muscle repair through the formation of new muscle fiber, increase in collagen synthesis, and down-regulation of Cox-2 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ICAM-1 expression on the villous syncytiotrophoblast (ST) is believed to participate in migration of maternal cells into the inflamed villi regardless of villitis etiology. However, its expression on immune cells in chronic villitis (CV) has yet to be analyzed. ICAM-1 induces cell-cell adhesion allowing intercellular communication, T cell-mediated defense mechanism, and inflammatory response. 21 cases of CV (all without an identifiable etiologic agent) and 3 control placentas were analyzed using ICAM-1, and for immune cells CD45, CD3 and CD68. These cells were subdivided according to their location in inflamed villi: a) within the inflamed villi and b) outside forming perivillous aggregates. Large amounts of CD45, CD3 and CD68 were found within the inflamed villi and forming perivillous aggregates attached to areas of trophoblastic loss. Inflamed villi usually showed ICAM-1+ ST. The majority of immune cells surrounding areas of trophoblastic rupture presented marked expression of ICAM-1. In contrast, a small number of immune cells within the inflamed villi exhibited ICAM-1 expression. Only some (<5%) inflamed villi without trophoblastic rupture and with ICAM-1+ ST presented adherence of immune cells. In inflamed villi of chronic villitis, the level of ICAM-1 expression on immune cells depends on their location: high in number of cells in the perivillous region and low within the villi. The strongest expression of ICAM-1 on immune cells attached to areas of trophoblastic rupture suggests that the loss of trophoblast can lead to an amplification of the inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels.