957 resultados para AGRICULTURAL LAND
Resumo:
En la actualidad, el seguimiento de la dinámica de los procesos medio ambientales está considerado como un punto de gran interés en el campo medioambiental. La cobertura espacio temporal de los datos de teledetección proporciona información continua con una alta frecuencia temporal, permitiendo el análisis de la evolución de los ecosistemas desde diferentes escalas espacio-temporales. Aunque el valor de la teledetección ha sido ampliamente probado, en la actualidad solo existe un número reducido de metodologías que permiten su análisis de una forma cuantitativa. En la presente tesis se propone un esquema de trabajo para explotar las series temporales de datos de teledetección, basado en la combinación del análisis estadístico de series de tiempo y la fenometría. El objetivo principal es demostrar el uso de las series temporales de datos de teledetección para analizar la dinámica de variables medio ambientales de una forma cuantitativa. Los objetivos específicos son: (1) evaluar dichas variables medio ambientales y (2) desarrollar modelos empíricos para predecir su comportamiento futuro. Estos objetivos se materializan en cuatro aplicaciones cuyos objetivos específicos son: (1) evaluar y cartografiar estados fenológicos del cultivo del algodón mediante análisis espectral y fenometría, (2) evaluar y modelizar la estacionalidad de incendios forestales en dos regiones bioclimáticas mediante modelos dinámicos, (3) predecir el riesgo de incendios forestales a nivel pixel utilizando modelos dinámicos y (4) evaluar el funcionamiento de la vegetación en base a la autocorrelación temporal y la fenometría. Los resultados de esta tesis muestran la utilidad del ajuste de funciones para modelizar los índices espectrales AS1 y AS2. Los parámetros fenológicos derivados del ajuste de funciones permiten la identificación de distintos estados fenológicos del cultivo del algodón. El análisis espectral ha demostrado, de una forma cuantitativa, la presencia de un ciclo en el índice AS2 y de dos ciclos en el AS1 así como el comportamiento unimodal y bimodal de la estacionalidad de incendios en las regiones mediterránea y templada respectivamente. Modelos autorregresivos han sido utilizados para caracterizar la dinámica de la estacionalidad de incendios y para predecir de una forma muy precisa el riesgo de incendios forestales a nivel pixel. Ha sido demostrada la utilidad de la autocorrelación temporal para definir y caracterizar el funcionamiento de la vegetación a nivel pixel. Finalmente el concepto “Optical Functional Type” ha sido definido, donde se propone que los pixeles deberían ser considerados como unidades temporales y analizados en función de su dinámica temporal. ix SUMMARY A good understanding of land surface processes is considered as a key subject in environmental sciences. The spatial-temporal coverage of remote sensing data provides continuous observations with a high temporal frequency allowing the assessment of ecosystem evolution at different temporal and spatial scales. Although the value of remote sensing time series has been firmly proved, only few time series methods have been developed for analyzing this data in a quantitative and continuous manner. In the present dissertation a working framework to exploit Remote Sensing time series is proposed based on the combination of Time Series Analysis and phenometric approach. The main goal is to demonstrate the use of remote sensing time series to analyze quantitatively environmental variable dynamics. The specific objectives are (1) to assess environmental variables based on remote sensing time series and (2) to develop empirical models to forecast environmental variables. These objectives have been achieved in four applications which specific objectives are (1) assessing and mapping cotton crop phenological stages using spectral and phenometric analyses, (2) assessing and modeling fire seasonality in two different ecoregions by dynamic models, (3) forecasting forest fire risk on a pixel basis by dynamic models, and (4) assessing vegetation functioning based on temporal autocorrelation and phenometric analysis. The results of this dissertation show the usefulness of function fitting procedures to model AS1 and AS2. Phenometrics derived from function fitting procedure makes it possible to identify cotton crop phenological stages. Spectral analysis has demonstrated quantitatively the presence of one cycle in AS2 and two in AS1 and the unimodal and bimodal behaviour of fire seasonality in the Mediterranean and temperate ecoregions respectively. Autoregressive models has been used to characterize the dynamics of fire seasonality in two ecoregions and to forecasts accurately fire risk on a pixel basis. The usefulness of temporal autocorrelation to define and characterized land surface functioning has been demonstrated. And finally the “Optical Functional Types” concept has been proposed, in this approach pixels could be as temporal unities based on its temporal dynamics or functioning.
Resumo:
Acknowledgements The authors thank the Global Research Alliance on Agricultural Greenhouse Gases for facilitating this work. The contribution of P.S. contributed to the EU-funded GHG Europe project.
Induced intensification: Agricultural change in Bangladesh with implications for Malthus and Boserup
Resumo:
Bangladesh is dominated by a small-holder agrarian economy under extreme stress. Production shortfalls, increasing economic polarization, and chronic malnutrition are persistent, but major famine has been diverted in part by significant growth in agriculture. This recent history is open to both Malthusian and Boserupian interpretations—a history we explore here through a test of the induced intensification thesis of agricultural change. This thesis, framed by variations in the behavior of small-holders, has grown from a simple demand-production relationship to a consideration of the mediating influences on that relationship. The induced intensification thesis is reviewed and tested for 265 households in 6 villages in Bangladesh from 1950–1986. A time-series analysis of an induced intensification model provides relatively high levels of explained variance in cropping intensity (frequency and land productivity) and also indicates the relative impacts of household class, environment, and cropping strategies. On average, the small-holders in question kept pace with the demands on production, although important class and village variations were evident and the proportion of landless households increased. These results, coupled with evidence that agricultural growth involved intensification thresholds, provide clues about Malthusian and Boserupian interpretations of Bangladesh, and suggest that small-holder agriculture there is likely to continue on a “muted” path of growth.
Resumo:
The recent intensification of agriculture, and the prospects of future intensification, will have major detrimental impacts on the nonagricultural terrestrial and aquatic ecosystems of the world. The doubling of agricultural food production during the past 35 years was associated with a 6.87-fold increase in nitrogen fertilization, a 3.48-fold increase in phosphorus fertilization, a 1.68-fold increase in the amount of irrigated cropland, and a 1.1-fold increase in land in cultivation. Based on a simple linear extension of past trends, the anticipated next doubling of global food production would be associated with approximately 3-fold increases in nitrogen and phosphorus fertilization rates, a doubling of the irrigated land area, and an 18% increase in cropland. These projected changes would have dramatic impacts on the diversity, composition, and functioning of the remaining natural ecosystems of the world, and on their ability to provide society with a variety of essential ecosystem services. The largest impacts would be on freshwater and marine ecosystems, which would be greatly eutrophied by high rates of nitrogen and phosphorus release from agricultural fields. Aquatic nutrient eutrophication can lead to loss of biodiversity, outbreaks of nuisance species, shifts in the structure of food chains, and impairment of fisheries. Because of aerial redistribution of various forms of nitrogen, agricultural intensification also would eutrophy many natural terrestrial ecosystems and contribute to atmospheric accumulation of greenhouse gases. These detrimental environmental impacts of agriculture can be minimized only if there is much more efficient use and recycling of nitrogen and phosphorus in agroecosystems.
Resumo:
New archaeological survey data are combined with previous evidence to examine the rural landscape during the Iberian Iron Age in the Valencia region of eastern Spain. One goal was to understand the settlement pattern and agricultural intensification through manuring. The second objective was to address the socioeconomic aspects of changes in the landscape. It is possible to trace the emergence of a hierarchical settlement pattern in the Iberian Iron Age in which large fortified settlements carried out the most important functions of control and exploitation of the territory, extending their authority over small rural villages and farmsteads. This pattern is associated with the complex socioeconomic structures and political organization of early Iberian states.
Resumo:
Traditional water supply systems in semi-arid agrarian ecosystems, mainly irrigation canals, contribute to the diversity of the landscape and influence the composition of species. To evaluate their effect on bird communities in the breeding season, we selected a rural area in southeastern Spain, where an intricate and extensive network of irrigation canals and cultivated areas is located between two wetlands declared as Natural Parks. Birds were counted at representative points distributed throughout the canal network at which we recorded several variables related to the physical features, the vertical and horizontal structure of associated vegetation, reed development (Phragmites australis) and land use in the neighboring areas. We detected 37 bird species, most of which were also breeding in the wetlands nearby. We used Hierarchical Partitioning analyses to identify the variables most strongly related to the probability of the presence of selected species and species richness. Vegetation cover and height close to the canals, together with reed development, were the most important types of variables explaining species presence and richness. We found that current management practices for reeds in canals are not well-suited for biodiversity conservation. We therefore propose alternatives that could be implemented in the area in cooperation with stakeholders.
Resumo:
Well-functioning factor markets are an essential condition for the competitiveness and sustainable development of agriculture and rural areas. At the same time, the functioning of the factor markets themselves is influenced by changes in agriculture and the rural economy. Such changes can be the result of progress in technology, globalisation and European market integration, changing consumer preferences and shifts in policy. Changes in the Common Agricultural Policy (CAP) over the last decade have particularly affected the rural factor markets. This book analyses the functioning of factor markets for agriculture in the EU-27 and several candidate countries. Written by leading academics and policy analysts from various European countries, these chapters compare the different markets, their institutional framework, their impact on agricultural development and structural change, and their interaction with the CAP. As the first comparative study to cover rural factor markets in Europe, highlighting their diversity − despite the Common Agricultural Policy and an integrated single market − Land, Labour & Capital Markets in European Agriculture provides a timely and valuable source of information at a time of further CAP reform and the continuing transformation of the EU's rural areas.
Resumo:
Factor markets are a central issue in analyses of farm development and of agricultural sector vitality. Among the different production factors, land is one of the most studied. Several studies seek to estimate the effect of government policy payments on land value or land rental prices. The studies mostly agree that government payments and other types of policy support are significant in explaining land prices and account for a large share of them. In October 2011, the European Commission published a new policy proposal for the common agricultural policy (CAP) up to 2020. The proposed regulation includes a shift from historical to regional payments. The objective of this paper is to provide an ex ante analysis of the impact of the new CAP policy instruments on the land market. In particular, the effect of the regionalisation of payments in Italy is examined. The analysis is based on the use of a mathematical programming model to simulate the changes in land demand for a farm in Emilia Romagna. The results highlight the relevance of the new policy mechanism in determining a change in land demand. Yet the effect is highly dependent on initial ownership of entitlements under the historical payment scheme.
Resumo:
The aim of this Working Paper is to provide an empirical analysis of the marginal return on working capital and fixed capital in agriculture, based on data gathered by the Farm Accountancy Data Network from seven EU member states. Particular emphasis is placed on the detection of credit market imperfections. The key idea is to provide farm group-specific estimates of the shadow price of capital, and to use these to analyse the drivers of on-farm capital use in European agriculture. Based on Cobb Douglas estimates of farm-type specific production functions, we find that working capital is typically used in more than economically optimal quantities and often displays negative marginal returns across countries and farm types. This is less often the case with regard to fixed capital, but it is only in a small set of sectors where access to fixed capital appears severely constrained. These sectors include field crop and mixed farms in Denmark, dairy farms in East Germany, as well as mixed farms in Italy and the UK. The relationship between farm financial indicators and the estimated shadow prices of capital varies considerably across countries and sectors. Among the farms with a high shadow price for fixed capital in Denmark, high debt levels and little owned land tended to induce more intensive capital use, which may reflect the liberal Danish banking system. In East Germany, Italy and the UK, high debt levels made farmers more tightly capital constrained. Hence, in the latter group of countries, more traditional mechanisms of capital allocation based on debt capacity seemed to be at work. As a general conclusion, EU agriculture appears to be characterised by overcapitalisation rather than by credit constraints.
Resumo:
This Factor Markets Working Paper analyses the impact of increasing direct payments on land rents in six new EU member states in which agricultural subsidies largely increased as a result of their EU accession. The authors find that up to 25 eurocents per additional euro of direct payments is capitalised in land rents. In addition, the results show that capitalisation of direct payments is higher in more credit constrained markets, while capitalisation of direct payments is lower in countries where more land is used by corporate farms.
Resumo:
"Part I, covering land use, includes figures for the enlarged European Community for 1958 and 1965, together with those for 1973, 1974 and 1975. Provisional figures are also provided for the most important crop groups in 1976. The EUR 9 totals for 1958 and 1965 are given merely for information as the enlarged Community has been in existence only since 1 January 1973. The figures for EUR 9 for the years 1955 to 1972 may be found in the publication 'Agricultural Statistics' No 2/1974....The statistics on land use cover only the main crop area and not the secondary crop areas under associated crops and catch crops. For information on the methods used in the present document the reader is referred to the common six-language nomenclature for land use and production statistics (pages X —XIII)."
Resumo:
Aims The relationship between biodiversity and ecosystem functioning is among the most active areas of ecological research. Furthermore, enhancing the diversity of degraded ecosystems is a major goal in applied restoration ecology. In grasslands, many species may be locally absent due to dispersal or microsite limitation and may therefore profit from mechanical disturbance of the resident vegetation. We established a seed addition and disturbance experiment across several grassland sites of different land use to test whether plant diversity can be increased in these grasslands. Additionally, the experiment will allow us testing the consequences of increased plant diversity for ecosystem processes and for the diversity of other taxa in real-world ecosystems. Here we present details of the experimental design and report results from the first vegetation survey one year after disturbance and seed addition. Moreover, we tested whether the effects of seed addition and disturbance varied among grassland depending on their land use or pre-disturbance plant diversity. Methods A full-factorial experiment was installed in 73 grasslands in three regions across Germany. Grasslands were under regular agricultural use, but varied in the type and the intensity of management, thereby representing the range of management typical for large parts of Central Europe. The disturbance treatment consisted of disturbing the top 10 cm of the sward using a rotavator or rotary harrow. Seed addition consisted of sowing a high-diversity seed mixture of regional plant species. These species were all regionally present, but often locally absent, depending on the resident vegetation composition and richness of each grassland. Important findings One year after sward disturbance it had significantly increased cover of bare soil, seedling species richness and numbers of seedlings. Seed addition had increased plant species richness, but only in combination with sward disturbance. The increase in species richness, when both seed addition and disturbance was applied, was higher at high land-use intensity and low resident diversity. Thus, we show that at least the early recruitment of many species is possible also at high land-use intensity, indicating the potential to restore and enhance biodiversity of species-poor agricultural grasslands. Our newly established experiment provides a unique platform for broad-scale research on the land-use dependence of future trajectories of vegetation diversity and composition and their effects on ecosystem functioning.
Resumo:
Item 473-B-1
Resumo:
Aug. 1979.
Resumo:
Mode of access: Internet.