784 resultados para ADAPTIVE REGRESSION SPLINES
Resumo:
Contexte - La prévalence de la maladie de Crohn (MC), une maladie inflammatoire chronique du tube digestif, chez les enfants canadiens se situe parmi les plus élevées au monde. Les interactions entre les réponses immunes innées et acquises aux microbes de l'hôte pourraient être à la base de la transition de l’inflammation physiologique à une inflammation pathologique. Le leucotriène B4 (LTB4) est un modulateur clé de l'inflammation et a été associé à la MC. Nous avons postulé que les principaux gènes impliqués dans la voie métabolique du LTB4 pourrait conférer une susceptibilité accrue à l'apparition précoce de la MC. Dans cette étude, nous avons exploré les associations potentielles entre les variantes de l'ADN des gènes ALOX5 et CYP4F2 et la survenue précoce de la MC. Nous avons également examiné si les gènes sélectionnés montraient des effets parent-d'origine, influençaient les phénotypes cliniques de la MC et s'il existait des interactions gène-gène qui modifieraient la susceptibilité à développer la MC chez l’enfant. Méthodes – Dans le cadre d’une étude de cas-parents et de cas-témoins, des cas confirmés, leurs parents et des contrôles ont été recrutés à partir de trois cliniques de gastro-entérologie à travers le Canada. Les associations entre les polymorphismes de remplacement d'un nucléotide simple (SNP) dans les gènes CYP4F2 et ALOX5 ont été examinées. Les associations allélique et génotypiques ont été examinées à partir d’une analyse du génotype conditionnel à la parenté (CPG) pour le résultats cas-parents et à l’aide de table de contingence et de régression logistique pour les données de cas-contrôles. Les interactions gène-gène ont été explorées à l'aide de méthodes de réduction multi-factorielles de dimensionnalité (MDR). Résultats – L’étude de cas-parents a été menée sur 160 trios. L’analyse CPG pour 14 tag-SNP (10 dans la CYP4F2 et 4 dans le gène ALOX5) a révélé la présence d’associations alléliques ou génotypique significatives entre 3 tag-SNP dans le gène CYP4F2 (rs1272, p = 0,04, rs3093158, p = 0.00003, et rs3093145, p = 0,02). Aucune association avec les SNPs de ALOX5 n’a pu être démontrée. L’analyse de l’haplotype de CYP4F2 a montré d'importantes associations avec la MC (test omnibus p = 0,035). Deux haplotypes (GAGTTCGTAA, p = 0,05; GGCCTCGTCG, p = 0,001) montraient des signes d'association avec la MC. Aucun effet parent-d'origine n’a été observé. Les tentatives de réplication pour trois SNPs du gene CYP4F2 dans l'étude cas-témoins comportant 225 cas de MC et 330 contrôles suggèrent l’association dans un de ceux-ci (rs3093158, valeur non-corrigée de p du test unilatéral = 0,03 ; valeur corrigée de p = 0.09). La combinaison des ces deux études a révélé des interactions significatives entre les gènes CYP4F2, ALOX et NOD2. Nous n’avons pu mettre en évidence aucune interaction gène-sexe, de même qu’aucun gène associé aux phénotypes cliniques de la MC n’a pu être identifié. Conclusions - Notre étude suggère que la CYP4F2, un membre clé de la voie métabolique LTB4 est un gène candidat potentiel pour MC. Nous avons également pu mettre en évidence que les interactions entre les gènes de l'immunité adaptative (CYP4F2 et ALOX5) et les gènes de l'immunité innée (NOD2) modifient les risques de MC chez les enfants. D'autres études sur des cohortes plus importantes sont nécessaires pour confirmer ces conclusions.
Resumo:
L’hypertrophie du ventricule gauche (HVG) est un processus adaptif et compensatoire qui se développe conséquemment à l’hypertension artérielle pour s’opposer à l’élévation chronique de la pression artérielle. L’HVG est caractérisée par une hypertrophie des cardiomyocytes suite à l’augmentation de la synthèse d’ADN, une prolifération des fibroblastes, une augmentation du dépôt de collagène et une altération de la matrice extracellulaire (MEC). Ces changements génèrent des troubles de relaxation et mènent au dysfonctionnement diastolique, ce qui diminue la performance cardiaque. La suractivité du système nerveux sympathique (SNS) joue un rôle essentiel dans le développement de l’hypertension artérielle et de l’HVG à cause de la libération excessive des catécholamines et de leurs effets sur la sécrétion des cytokines pro-inflammatoires et sur les différentes voies de signalisation hypertrophiques et prolifératives. Le traitement antihypertenseur avec de la moxonidine, un composé sympatholytique d’action centrale, permet une régression de l’HVG suite à une réduction soutenue de la synthèse d'ADN et d’une stimulation transitoire de la fragmentation de l'ADN qui se produit au début du traitement. En raison de l’interaction entre l’HVG, les cytokines inflammatoires, le SNS et leurs effets sur les protéines de signalisation hypertrophiques, l’objectif de cette étude est de détecter dans un modèle animal d’hypertension artérielle et d’HVG, les différentes voies de signalisation associées à la régression de l’HVG et à la performance cardiaque. Des rats spontanément hypertendus (SHR, 12 semaines) ont reçu de la moxonidine à 0, 100 et 400 µg/kg/h, pour une période de 1 et 4 semaines, via des mini-pompes osmotiques implantées d’une façon sous-cutanée. Après 4 semaines de traitement, la performance cardiaque a été mesurée par écho-doppler. Les rats ont ensuite été euthanasiés, le sang a été recueilli pour mesurer les concentrations des cytokines plasmatiques et les cœurs ont été prélevés pour la détermination histologique du dépôt de collagène et de l'expression des protéines de signalisation dans le ventricule gauche. Le traitement de 4 semaines n’a eu aucun effet sur les paramètres systoliques mais a permis d’améliorer les paramètres diastoliques ainsi que la performance cardiaque globale. Par rapport au véhicule, la moxonidine (400 µg/kg/h) a permis d’augmenter transitoirement la concentration plasmatique de l’IL-1β après une semaine et de réduire la masse ventriculaire gauche. De même, on a observé une diminution du dépôt de collagène et des concentrations plasmatiques des cytokines IL-6 et TNF-α, ainsi qu’une diminution de la phosphorylation de p38 et d’Akt dans le ventricule gauche après 1 et 4 semaines de traitement, et cela avec une réduction de la pression artérielle et de la fréquence cardiaque. Fait intéressant, les effets anti-hypertrophiques, anti-fibrotiques et anti-inflammatoires de la moxonidine ont pu être observés avec la dose sous-hypotensive (100 µg/kg/h). Ces résultats suggèrent des effets cardiovasculaires bénéfiques de la moxonidine associés à une amélioration de la performance cardiaque, une régulation de l'inflammation en diminuant les niveaux plasmatiques des cytokines pro-inflammatoires ainsi qu’en inhibant la MAPK p38 et Akt, et nous permettent de suggérer que, outre l'inhibition du SNS, moxonidine peut agir sur des sites périphériques.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes
Resumo:
Le logiciel de simulation des données et d'analyse est Conquest V.3
Resumo:
The main objective of this letter is to formulate a new approach of learning a Mahalanobis distance metric for nearest neighbor regression from a training sample set. We propose a modified version of the large margin nearest neighbor metric learning method to deal with regression problems. As an application, the prediction of post-operative trunk 3-D shapes in scoliosis surgery using nearest neighbor regression is described. Accuracy of the proposed method is quantitatively evaluated through experiments on real medical data.
Resumo:
Most adaptive linearization circuits for the nonlinear amplifier have a feedback loop that returns the output signal oj'tne eunplifier to the lineurizer. The loop delay of the linearizer most be controlled precisely so that the convergence of the linearizer should be assured lot this Letter a delay control circuit is presented. It is a delay lock loop (ULL) with it modified early-lute gate and can he easily applied to a DSP implementation. The proposed DLL circuit is applied to an adaptive linearizer with the use of a polynomial predistorter, and the simulalion for a 16-QAM signal is performed. The simulation results show that the proposed DLL eliminates the delay between the reference input signal and the delayed feedback signal of the linearizing circuit perfectly, so that the predistorter polynomial coefficients converge into the optimum value and a high degree of linearization is achieved
Resumo:
Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.
Resumo:
The proliferation of wireless sensor networks in a large spectrum of applications had been spurered by the rapid advances in MEMS(micro-electro mechanical systems )based sensor technology coupled with low power,Low cost digital signal processors and radio frequency circuits.A sensor network is composed of thousands of low cost and portable devices bearing large sensing computing and wireless communication capabilities. This large collection of tiny sensors can form a robust data computing and communication distributed system for automated information gathering and distributed sensing.The main attractive feature is that such a sensor network can be deployed in remote areas.Since the sensor node is battery powered,all the sensor nodes should collaborate together to form a fault tolerant network so as toprovide an efficient utilization of precious network resources like wireless channel,memory and battery capacity.The most crucial constraint is the energy consumption which has become the prime challenge for the design of long lived sensor nodes.
Resumo:
This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder
Resumo:
This thesis investigated the potential use of Linear Predictive Coding in speech communication applications. A Modified Block Adaptive Predictive Coder is developed, which reduces the computational burden and complexity without sacrificing the speech quality, as compared to the conventional adaptive predictive coding (APC) system. For this, changes in the evaluation methods have been evolved. This method is as different from the usual APC system in that the difference between the true and the predicted value is not transmitted. This allows the replacement of the high order predictor in the transmitter section of a predictive coding system, by a simple delay unit, which makes the transmitter quite simple. Also, the block length used in the processing of the speech signal is adjusted relative to the pitch period of the signal being processed rather than choosing a constant length as hitherto done by other researchers. The efficiency of the newly proposed coder has been supported with results of computer simulation using real speech data. Three methods for voiced/unvoiced/silent/transition classification have been presented. The first one is based on energy, zerocrossing rate and the periodicity of the waveform. The second method uses normalised correlation coefficient as the main parameter, while the third method utilizes a pitch-dependent correlation factor. The third algorithm which gives the minimum error probability has been chosen in a later chapter to design the modified coder The thesis also presents a comparazive study beh-cm the autocorrelation and the covariance methods used in the evaluaiicn of the predictor parameters. It has been proved that the azztocorrelation method is superior to the covariance method with respect to the filter stabf-it)‘ and also in an SNR sense, though the increase in gain is only small. The Modified Block Adaptive Coder applies a switching from pitch precitzion to spectrum prediction when the speech segment changes from a voiced or transition region to an unvoiced region. The experiments cont;-:ted in coding, transmission and simulation, used speech samples from .\£=_‘ajr2_1a:r1 and English phrases. Proposal for a speaker reecgnifion syste: and a phoneme identification system has also been outlized towards the end of the thesis.
Resumo:
Clustering schemes improve energy efficiency of wireless sensor networks. The inclusion of mobility as a new criterion for the cluster creation and maintenance adds new challenges for these clustering schemes. Cluster formation and cluster head selection is done on a stochastic basis for most of the algorithms. In this paper we introduce a cluster formation and routing algorithm based on a mobility factor. The proposed algorithm is compared with LEACH-M protocol based on metrics viz. number of cluster head transitions, average residual energy, number of alive nodes and number of messages lost
Resumo:
In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576