972 resultados para 2D triangular meshes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Direct Boundary Element Method (DBEM) is presented to solve the elastodynamic field equations in 2D, and a complete comprehensive implementation is given. The DBEM is a useful approach to obtain reliable numerical estimates of site effects on seismic ground motion due to irregular geological configurations, both of layering and topography. The method is based on the discretization of the classical Somigliana's elastodynamic representation equation which stems from the reciprocity theorem. This equation is given in terms of the Green's function which is the full-space harmonic steady-state fundamental solution. The formulation permits the treatment of viscoelastic media, therefore site models with intrinsic attenuation can be examined. By means of this approach, the calculation of 2D scattering of seismic waves, due to the incidence of P and SV waves on irregular topographical profiles is performed. Sites such as, canyons, mountains and valleys in irregular multilayered media are computed to test the technique. The obtained transfer functions show excellent agreement with already published results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this talk we show a construction for characterising developable surfaces in the form of Bézier triangular patches. It is shown that constructions used for rectangular patches are not useful, since they provide degenerate triangular patches. Explicit constructions of non-degenerate developable triangular patches are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transverse galloping is a type of aeroelastic instability characterised by large amplitude, low frequency oscillation of a structure in the direction normal to the mean wind direction. It normally appears in bodies with small stiffness and structural damping, provided the incident flow velocity is high enough. In the simplest approach transverse galloping can be considered as a one-degree-of-freedom oscillator subjected to aerodynamic forces, which in turn can be described by using a quasi-steady description. In this frame it has been demonstrated that hysteresis phenomena in transverse galloping is related to the existence of inflection points in the curve giving the dependence with the angle of attack of the aerodynamic coefficient normal to the incident flow. Aiming at experimentally checking such a relationship between these inflection points and hysteresis, wind tunnel experiments have been conducted. Experiments have been restricted to isosceles triangular cross-section bodies, whose galloping behaviour is well documented. Experimental results show that, according to theoretical predictions, hysteresis takes place at the angles of attack where there are inflection points in the lift coefficient curve, provided that the body is prone to gallop at these angles of attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To propose an automated patient-specific algorithm for the creation of accurate and smooth meshes of the aortic anatomy, to be used for evaluating rupture risk factors of abdominal aortic aneurysms (AAA). Finite element (FE) analyses and simulations require meshes to be smooth and anatomically accurate, capturing both the artery wall and the intraluminal thrombus (ILT). The two main difficulties are the modeling of the arterial bifurcations, and of the ILT, which has an arbitrary shape that is conforming to the aortic wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid crystal devices are being used in many non-display applications in order to construct small devices controlled by low voltage electronics without mechanical components. In this work, we present a novel liquid crystal device for laser beam steering. In this device the orientation of the liquid crystal molecules can be controlled. A change in the liquid crystal orientation results in a change of the refractive index. When a laser beam passes through the device, the beam will be deviated (Fig.1) and the device works a prism. The main difference between this device and a prism is that in the device the orientation profile of the liquid crystal molecules can be modified so that the laser beam can be deviated a required angle: the device is tuneable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results of the benchmarking of COBAYA3 pin-by-pin for VVER-1000 obtained in the frame of the EU NURISP project. The 3D lattice solver in COBAYA3 uses transport corrected multi-group diffusion approximation with side-dependent interface discontinuity factors of GET or Selengut Black Box type. The objective of this study is to test the few-group calculation scheme when using structur ed and unstructured spatial meshes. Unstructured mesh is necessary to model the water gaps between the hexagonal assemblies. The benchmark problems include pin-by-pin calculations of 2D subsets of the core and comparison with APOLLO2 and TR IPOLI4 transport reference solutions. COBAYA3 solutions in 2, 4 and 8 energy groups have been tested. The results show excellent agreement with the reference on es when using side-dependent interface discontinuity factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative dissipative multi-beam network for triangular arrays of three radiating elements is proposed. This novel network provides three orthogonal beams in θ0 elevation angle and a fourth one in the broadside steering direction. The network is composed of 90º hybrid couplers and fixed phase shifters. In this paper, a relation between network components, radiating element distance and beam steering directions will be shown. Application of the proposed dissipative network to the triangular cells of three radiating elements that integrate the intelligent antenna GEODA will be exhibited. This system works at 1.7 GHz, it has a 60º single radiating element beamwidth and a distance between array elements of 0.57 λ. Both beam patterns, theoretical and simulated, obtained with the network will be depicted. Moreover, the whole system, dissipative network built with GEODA cell array, has been measured in the anechoic chamber of the Radiation Group of Technical University of Madrid, demonstrating expected performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative dissipative multi-beam network for triangular arrays of three radiating elements is proposed. This novel network provides three orthogonal beams in θ0 elevation angle and a fourth one in the broadside steering direction. The network is composed of 90º hybrid couplers and fixed phase shifters. In this paper, a relation between network components, radiating element distance and beam steering directions will be shown. Application of the proposed dissipative network to the triangular cells of three radiating elements that integrate the intelligent antenna GEODA will be exhibited. This system works at 1.7 GHz, it has a 60º single radiating element beamwidth and a distance between array elements of 0.57λ. Both beam patterns, theoretical and simulated, obtained with the network will be depicted. Moreover, the whole system, dissipative network built with GEODA cell array, has been measured in the anechoic chamber of the Radiation Group of Technical University of Madrid, demonstrating expected performance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a crosswind scenario, the risk of high-speed trains overturning increases when they run on viaducts since the aerodynamic loads are higher than on the ground. In order to increase safety, vehicles are sheltered by fences that are installed on the viaduct to reduce the loads experienced by the train. Windbreaks can be designed to have different heights, and with or without eaves on the top. In this paper, a parametric study with a total of 12 fence designs was carried out using a two-dimensional model of a train standing on a viaduct. To asses the relative effectiveness of sheltering devices, tests were done in a wind tunnel with a scaled model at a Reynolds number of 1 × 105, and the train’s aerodynamic coefficients were measured. Experimental results were compared with those predicted by Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations of flow, showing that a computational model is able to satisfactorily predict the trend of the aerodynamic coefficients. In a second set of tests, the Reynolds number was increased to 12 × 106 (at a free flow air velocity of 30 m/s) in order to simulate strong wind conditions. The aerodynamic coefficients showed a similar trend for both Reynolds numbers; however, their numerical value changed enough to indicate that simulations at the lower Reynolds number do not provide all required information. Furthermore, the variation of coefficients in the simulations allowed an explanation of how fences modified the flow around the vehicle to be proposed. This made it clear why increasing fence height reduced all the coefficients but adding an eave had an effect mainly on the lift force coefficient. Finally, by analysing the time signals it was possible to clarify the influence of the Reynolds number on the peak-to-peak amplitude, the time period and the Strouhal number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents solutions of the NURISP VVER lattice benchmark using APOLLO2, TRIPOLI4 and COBAYA3 pin-by-pin. The main objective is to validate MOC based calculation schemes for pin-by-pin cross-section generation with APOLLO2 against TRIPOLI4 reference results. A specific objective is to test the APOLLO2 generated cross-sections and interface discontinuity factors in COBAYA3 pin-by-pin calculations with unstructured mesh. The VVER-1000 core consists of large hexagonal assemblies with 2mm inter-assembly water gaps which require the use of unstructured meshes in the pin-by-pin core simulators. The considered 2D benchmark problems include 19-pin clusters, fuel assemblies and 7-assembly clusters. APOLLO2 calculation schemes with the step characteristic method (MOC) and the higher-order Linear Surface MOC have been tested. The comparison of APOLLO2 vs.TRIPOLI4 results shows a very close agreement. The 3D lattice solver in COBAYA3 uses transport corrected multi-group diffusion approximation with interface discontinuity factors of GET or Black Box Homogenization type. The COBAYA3 pin-by-pin results in 2, 4 and 8 energy groups are close to the reference solutions when using side-dependent interface discontinuity factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for generating patient-specific high quality conforming hexahedral meshes is presented. The meshes are directly obtained from the segmentation of patient magnetic resonance (MR) images of abdominal aortic aneu-rysms (AAA). The MRI permits distinguishing between struc-tures of interest in soft tissue. Being so, the contours of the lumen, the aortic wall and the intraluminal thrombus (ILT) are available and thus the meshes represent the actual anato-my of the patient?s aneurysm, including the layered morpholo-gies of these structures. Most AAAs are located in the lower part of the aorta and the upper section of the iliac arteries, where the inherent tortuosity of the anatomy and the presence of the ILT makes the generation of high-quality elements at the bifurcation is a challenging task. In this work we propose a novel approach for building quadrilateral meshes for each surface of the sectioned geometry, and generating conforming hexahedral meshes by combining the quadrilateral meshes. Conforming hexahedral meshes are created for the wall and the ILT. The resulting elements are evaluated on four patients? datasets using the Scaled Jacobian metric. Hexahedral meshes of 25,000 elements with 94.8% of elements well-suited for FE analysis are generated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, the introduction of microarrays in the diagnosis of type I allergy is allowing the clinicians to have a much more accurate picture of their allergenic profile. However, the simultaneous measurement of specific IgE to multiple molecules can show unexpected sensitisations, without knowing their clinical relevance. For instance, we have been observing a high prevalence (74%) of sensitisation to Act d 2 (the thaumatin of kiwifruit) in patients sensitised to Alt a 1 (major allergen of Alternaria alternata) with a confirmed allergy to this mould. The aim of the present study was to clarify if there was any clinical relevance in this finding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterns of evanescent photovoltaic field induced by illumination on a surface of lithium niobate (LN) have been calculated and compared with the experimental patterns of nano- and microparticles trapped by dielectrophoretic forces. A tool for this calculation has been developed. Calculo de distribución espacial de campo por efecto fotovoltaico con patrones arbitrarios de iluminación, en LiNbO3

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR can be considered a multi-scale multidimensional technology in the sense that it provides both spatial insight at macroscopic (MRI) or microscopic level (relaxometry), together with chemical characterization (HR-MAS). In this study 296 apples (from 4 cultivars) were MRI screened (20 slices per fruit) among which 7 fruits were used for metabolomic study by 1H HR MAS in order to assess various chemical shifts: malic acid, sucrose, glucose, fructose and ethanol. On the first season, tissue samples were taken from the sound and affected apples (near the core, centre and outer part of the mesocarp) belonging to sound and affected locations, while on the second season, tissue samples were focused on the comparison between sound and affected tissue. Beside, MRI and 2D non-destructive relaxometry (on whole fruits, and localized tissue) where performed on 72 and 12 apples respectively in order to compare features at macroscopic (tissue) and microscopic (subcellular) level. HR MAS shows higher content of ?-glucose, ?-glucose, malic acid and aromatic compounds in watercore affected tissues from both seasons, while sound tissue reflects higher sucrose. Microscopic (subcellular) degradation of tissue varies according to disorder development and is in good accordance with macroscopic characterization with MRI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis doctoral está encuadrada dentro del marco general de la ingeniería biomédica aplicada al tratamiento de las enfermedades cardiovasculares, enfermedades que provocan alrededor de 1.9 millones (40%) de muertes al año en la Unión Europea. En este contexto surge el proyecto europeo SCATh-Smart Catheterization, cuyo objetivo principal es mejorar los procedimientos de cateterismo aórtico introduciendo nuevas tecnologías de planificación y navegación quirúrgica y minimizando el uso de fluoroscopía. En particular, esta tesis aborda el modelado y diagnóstico de aneurismas aórticos abdominales (AAA) y del trombo intraluminal (TIL), allí donde esté presente, así como la segmentación de estas estructuras en imágenes preoperatorias de RM. Los modelos físicos específicos del paciente, construidos a partir de imágenes médicas preoperatorias, tienen múltiples usos, que van desde la evaluación preoperatoria de estructuras anatómicas a la planificación quirúrgica para el guiado de catéteres. En el diagnóstico y tratamiento de AAA, los modelos físicos son útiles a la hora de evaluar diversas variables biomecánicas y fisiológicas de las estructuras vasculares. Existen múltiples técnicas que requieren de la generación de modelos físicos que representen la anatomía vascular. Una de las principales aplicaciones de los modelos físicos es el análisis de elementos finitos (FE). Las simulaciones de FE para AAA pueden ser específicas para el paciente y permiten modelar estados de estrés complejos, incluyendo los efectos provocados por el TIL. La aplicación de métodos numéricos de análisis tiene como requisito previo la generación de una malla computacional que representa la geometría de interés mediante un conjunto de elementos poliédricos, siendo los hexaédricos los que presentan mejores resultados. En las estructuras vasculares, generar mallas hexaédricas es un proceso especialmente exigente debido a la compleja anatomía 3D ramificada. La mayoría de los AAA se encuentran situados en la bifurcación de la arteria aorta en las arterias iliacas y es necesario modelar de manera fiel dicha bifurcación. En el caso de que la sangre se estanque en el aneurisma provocando un TIL, éste forma una estructura adyacente a la pared aórtica. De este modo, el contorno externo del TIL es el mismo que el contorno interno de la pared, por lo que las mallas resultantes deben reflejar esta particularidad, lo que se denomina como "mallas conformadas". El fin último de este trabajo es modelar las estructuras vasculares de modo que proporcionen nuevas herramientas para un mejor diagnóstico clínico, facilitando medidas de riesgo de rotura de la arteria, presión sistólica o diastólica, etc. Por tanto, el primer objetivo de esta tesis es diseñar un método novedoso y robusto para generar mallas hexaédricas tanto de la pared aórtica como del trombo. Para la identificación de estas estructuras se utilizan imágenes de resonancia magnética (RM). Deben mantenerse sus propiedades de adyacencia utilizando elementos de alta calidad, prestando especial atención al modelado de la bifurcación y a que sean adecuadas para el análisis de FE. El método tiene en cuenta la evolución de la línea central del vaso en el espacio tridimensional y genera la malla directamente a partir de las imágenes segmentadas, sin necesidad de reconstruir superficies triangulares. Con el fin de reducir la intervención del usuario en el proceso de generación de las mallas, es también objetivo de esta tesis desarrollar un método de segmentación semiautomática de las distintas estructuras de interés. Las principales contribuciones de esta tesis doctoral son: 1. El diseño, implementación y evaluación de un algoritmo de generación de mallas hexaédricas conformadas de la pared y el TIL a partir de los contornos segmentados en imágenes de RM. Se ha llevado a cabo una evaluación de calidad que determine su aplicabilidad a métodos de FE. Los resultados demuestran que el algoritmo desarrollado genera mallas conformadas de alta calidad incluso en la región de la bifurcación, que son adecuadas para su uso en métodos de análisis de FE. 2. El diseño, implementación y evaluación de un método de segmentación automático de las estructuras de interés. La luz arterial se segmenta de manera semiautomática utilizando un software disponible a partir de imágenes de RM con contraste. Los resultados de este proceso sirven de inicialización para la segmentación automática de las caras interna y externa de la pared aórtica utilizando métodos basado en modelos de textura y forma a partir de imágenes de RM sin contraste. Los resultados demuestran que el algoritmo desarrollado proporciona segmentaciones fieles de las distintas estructuras de interés. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como aportación para futuros avances en la generación de modelos físicos de geometrías biológicas. ABSTRACT The frame of this PhD Thesis is the biomedical engineering applied to the treatment of cardiovascular diseases, which cause around 1.9 million deaths per year in the European Union and suppose about 40% of deaths per year. In this context appears the European project SCATh-Smart Catheterization. The main objective of this project is creating a platform which improves the navigation of catheters in aortic catheterization minimizing the use of fluoroscopy. In the framework of this project, the specific field of this PhD Thesis is the diagnosis and modeling of abdominal aortic aneurysm (AAAs) and the intraluminal thrombus (ILT) whenever it is present. Patient-specific physical models built from preoperative imaging are becoming increasingly important in the area of minimally invasive surgery. These models can be employed for different purposes, such as the preoperatory evaluation of anatomic structures or the surgical planning for catheter guidance. In the specific case of AAA diagnosis and treatment, physical models are especially useful for evaluating pressures over vascular structures. There are multiple techniques that require the generation of physical models which represent the target anatomy. Finite element (FE) analysis is one the principal applications for physical models. FE simulations for AAA may be patient-specific and allow modeling biomechanical and physiological variables including those produced by ILT, and also the segmentation of those anatomical structures in preoperative MR images. Applying numeric methods requires the generation of a proper computational mesh. These meshes represent the patient anatomy using a set of polyhedral elements, with hexahedral elements providing better results. In the specific case of vascular structures, generating hexahedral meshes is a challenging task due to the complex 3D branching anatomy. Each patient’s aneurysm is unique, characterized by its location and shape, and must be accurately represented for subsequent analyses to be meaningful. Most AAAs are located in the region where the aorta bifurcates into the iliac arteries and it is necessary to model this bifurcation precisely and reliably. If blood stagnates in the aneurysm and forms an ILT, it exists as a conforming structure with the aortic wall, i.e. the ILT’s outer contour is the same as the wall’s inner contour. Therefore, resulting meshes must also be conforming. The main objective of this PhD Thesis is designing a novel and robust method for generating conforming hexahedral meshes for the aortic wall and the thrombus. These meshes are built using largely high-quality elements, especially at the bifurcation, that are suitable for FE analysis of tissue stresses. The method accounts for the evolution of the vessel’s centerline which may develop outside a single plane, and generates the mesh directly from segmented images without the requirement to reconstruct triangular surfaces. In order to reduce the user intervention in the mesh generation process is also a goal of this PhD. Thesis to develop a semiautomatic segmentation method for the structures of interest. The segmentation is performed from magnetic resonance image (MRI) sequences that have tuned to provide high contrast for the arterial tissue against the surrounding soft tissue, so that we determine the required information reliably. The main contributions of this PhD Thesis are: 1. The design, implementation and evaluation of an algorithm for generating hexahedral conforming meshes of the arterial wall and the ILT from the segmented contours. A quality inspection has been applied to the meshes in order to determine their suitability for FE methods. Results show that the developed algorithm generates high quality conforming hexahedral meshes even at the bifurcation region. Thus, these meshes are suitable for FE analysis. 2. The design, implementation and evaluation of a semiautomatic segmentation method for the structures of interest. The lumen is segmented in a semiautomatic way from contrast filled MRI using an available software. The results obtained from this process are used to initialize the automatic segmentation of the internal and external faces of the aortic wall. These segmentations are performed by methods based on texture and shape models from MRI with no contrast. The results show that the algorithm provides faithful segmentations of the structures of interest requiring minimal user intervention. In conclusion, the work undertaken in this PhD. Thesis verifies the investigation hypotheses. It intends to serve as basis for future physical model generation of proper biological anatomies used by numerical methods.