965 resultados para 100404 Regenerative Medicine (incl. Stem Cells and Tissue Engineering)
Resumo:
Degeneration of intervertebral discs (IVD) is one of the main causes of back pain and tissue engineering has been proposed as a treatment. Tissue engineering requires the use of highly expensive growth factors, which might, in addition, lack regulatory approval for human use. In an effort to find readily available differentiation factors, we tested three molecules – dexamethasone, triiodothyronine (T3) and insulin – on human IVD cells isolated after surgery, expanded in vitro and transferred into alginate beads. Triplicates containing 40 ng/ml dexamethasone, 10 nM T3 and 10 µg/ml insulin, together with a positive control (10 ng/mL transforming growth factor (TGF)-beta 1), were sampled weekly over six weeks and compared to a negative control. Furthermore, we compared the results to cultures with optimized chondrogenic media and under hypoxic condition (2% O2). Glycosaminoglycan (GAG) determination by Alcian Blue assay and histological staining showed dexamethasone to be more effective than T3 and insulin, but less than TGF-beta1. DNA quantification showed that only dexamethasone stimulated cell proliferation. qPCR demonstrated that TGF-beta1 and the optimized chondrogenic groups increased the expression of collagen type II, while aggrecan was stimulated in cultures containing dexamethasone. Hypoxia increased GAG accumulation, collagen type II and aggrecan expression, but had no effect on or even lowered cell number. In conclusion, dexamethasone is a valuable and cost-effective molecule for chondrogenic and viability induction of IVD cells under normoxic and hypoxic conditions, while insulin and T3 did not show significant differences.
Resumo:
Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.
Resumo:
New theories on the regeneration of ischemic vasculature have emerged indicating a pivotal role of adult stem cells. The aim of this study was to investigate homing and hemodynamic effects of circulating bone marrow-derived mesenchymal stem cells (MSCs) in a critically ischemic murine skin flap model. Bone marrow-derived mesenchymal stem cells (Lin(-)CD105(+)) were harvested from GFP(+)-donor mice and transferred to wildtype C57BL/6 mice. Animals receiving GFP(+)-fibroblasts served as a control group. Laser scanning confocal microscopy and intravital fluorescence microscopy were used for morphological analysis, monitoring and quantitative assessment of the stem cell homing and microhemodynamics over two weeks. Immunohistochemical staining was performed for GFP, eNOS, iNOS, VEGF. Tissue viability was analyzed by TUNEL-assay. We were able to visualize perivascular homing of MSCs in vivo. After 4 days, MSCs aligned along the vascular wall without undergoing endothelial or smooth muscle cell differentiation during the observation period. The gradual increase in arterial vascular resistance observed in the control group was abolished after MSC administration (P<0.01). At capillary level, a strong angiogenic response was found from day 7 onwards. Functional capillary density was raised in the MSC group to 197% compared to 132% in the control group (P<0.01). Paracrine expression of VEGF and iNOS, but not eNOS could be shown in the MSC group but not in the controls. In conclusion, we demonstrated that circulating bone marrow-derived MSCs home to perivascular sites in critically ischemic tissue, exhibits paracrine function and augment microhemodynamics. These effects were mediated through arteriogenesis and angiogenesis, which contributed to vascular regeneration.
Resumo:
Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition to bulk cells. In this study, we report that leukemia stem cell function in xenotransplant models of acute myeloid leukemia (AML) depends on SIRPα-mediated inhibition of macrophages through engagement with its ligand CD47. We generated mice expressing SIRPα variants with differential ability to bind human CD47 and demonstrated that macrophage-mediated phagocytosis and clearance of AML stem cells depend on absent SIRPα signaling. We obtained independent confirmation of the genetic restriction observed in our mouse models by using SIRPα-Fc fusion protein to disrupt SIRPα-CD47 engagement. Treatment with SIRPα-Fc enhanced phagocytosis of AML cells by both mouse and human macrophages and impaired leukemic engraftment in mice. Importantly, SIRPα-Fc treatment did not significantly enhance phagocytosis of normal hematopoietic targets. These findings support the development of therapeutics that antagonize SIRPα signaling to enhance macrophage-mediated elimination of AML.
Resumo:
OBJECTIVE: The purpose of this study was to assess the feasibility of autologous stem cell transplantation in fetal sheep and to compare short-term engraftment of allogeneic and autologous fetal liver stem cells in an immunocompetent large animal model. STUDY DESIGN: Fetal liver stem cells were collected from preimmune sheep fetuses with an open or ultrasound-guided technique. After being labeled with PKH26, the cells were transplanted intraperitoneally into allogeneic and autologous fetal recipients at 48 to 64 days of gestation. Engraftment was determined by flow cytometry and real-time polymerase chain reaction 1 to 2 weeks after transplantation. RESULTS: Fetal loss rate was 29% (allogeneic transplantation) and 73% (autologous transplantation). Engraftment of donor cells was found in all fetuses, with a level of < or =4.7% in fetal liver, spleen, bone marrow, blood and thymus. Overall, there was no difference between allogeneic and autologous grafts. CONCLUSION: Autologous in utero transplantation of fetal liver stem cells in fetal sheep is feasible, but yields a high loss rate. Differences in the major histocompatibility complex between donor and recipient seems not to have a major impact on stem cell engraftment early in gestation; major histocompatibility complex-independent donor/host competition might be responsible for low engraftment in immunocompetent recipients.
Resumo:
Most genetic diseases of the lymphohematopoietic system, including hemoglobinopathies, can now be diagnosed early in gestation. However, as yet, prenatal treatment is not available. Postnatal therapy by hematopoietic stem cell (HSC) transplantation from bone marrow, mobilized peripheral blood, or umbilical cord blood is possible for several of these diseases, in particular for the hemoglobinopathies, but is often limited by a lack of histocompatible donors, severe treatment-associated morbidity, and preexisting organ damage that developed before birth. In-utero transplantation of allogeneic HSC has been performed successfully in various animal models and recently in humans. However, the clinical success of this novel treatment is limited to diseases in which the fetus is affected by severe immunodeficiency. The lack of donor cell engraftment in nonimmunocompromised hosts is thought to be due to immunologic barriers, as well as to competitive fetal marrow population by host HSCs. Among the possible strategies to circumvent allogeneic HLA barriers, the use of gene therapy by genetically corrected autologous HSCs in the fetus is one of the most promising approaches. The recent development of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells using new vector constructs and transduction protocols opens new perspectives for gene therapy in general, as well as for prenatal gene transfer in particular. The fetus might be especially susceptible for successful gene therapy approaches because of the developing, expanding hematopoietic system during gestation and the immunologic naiveté early in gestation, precluding immune reaction towards the transgene by inducing tolerance. Ethical issues, in particular regarding treatment safety, must be addressed more closely before clinical trials with fetal gene therapy in human pregnancies can be initiated.