956 resultados para β adrenergic agonist
Resumo:
Although cannabinoid drugs have been used for thousands of years both recreationally and therapeutically, little has been known about their mechanisms of action until recently. Since the discovery of the endogenous cannabinoid CB1 receptor in 1988, the behavioral profile of cannabinoid receptor ligands has been much more thoroughly defined. Cannabinoid CB1 agonists have been shown to produce a variety of behavioral effects including suppression of locomotion, catalepsy, hypothermia, and analgesia. Research has also demonstrated that these behavioral effects can be inhibited by CB1 receptor antagonists including SR 141716 and AM 251. Although behavioral indicators of anxiety including thigmotaxis have been observed in several different paradigms, there is inconclusive and often times contradictory evidence to define the role of anxiety in CB1 receptor activation. The present study addressed the behavioral profile of AM 4054, a novel full agonist at the CB1 receptor, as well as the ability of the CB1 antagonist AM 251 to reverse these effects. To further identify and expand research on the suppression of locomotion and induction of thigmotaxis with the administration of a CB1 agonist, experiment 1 was conducted in the open field. In this experiment, each rat (n=40) was randomly assigned one of the five treatments: vehicle, 0.16, 0.32, 0.64, or 1.25 mg/kg AM 4054. After a 30 minute pre-treatment, each subject was tested in the open field for 18 minutes. Results indicated that AM 4054 produced a dose-related suppression of locomotion as well as the subtle presence of thigmotaxis in two out of four doses. In experiment 2, subjects (n=40) received either vehicle or 2.0 or 4.0 mg/kg AM 251 60 minutes prior to testing. After 30 minutes, the subjects were given either a 0.3 mg/kg dose of AM 4054 or vehicle. After a total pretreatment duration of 60 minutes, the animals were tested on a battery of tasks including an 18 minute session in locomotor boxes. Experiment 2 was a continuation of a previous study conducted in the same lab, which confirmed the effects of AM 4054 on this tetrad of tasks as being consistent with other cannabinoid agonists. In this experiment the effects of AM 4054 were reversed by the administration of the CB1 antagonist AM 251. Past studies have shown that AM 4054 is a highly potent drug with behavioral actions similar to other cannabinoid CB1 agonists. Furthermore, AM 4054 can be a useful drug in future studies, and has potential therapeutic value for the treatment of various conditions.
Resumo:
One of the most critical aspects of G Protein Coupled Receptors (GPCRs) regulation is their rapid and acute desensitization following agonist stimulation. Phosphorylation of these receptors by GPCR kinases (GRK) is a major mechanism of desensitization. Considerable evidence from studies of rhodopsin kinase and GRK2 suggests there is an allosteric docking site for the receptor distinct from the GRK catalytic site. While the agonist-activated GPCR appears crucial for GRK activation, the molecular details of this interaction remain unclear. Recent studies suggested an important role for the N- and C-termini and domains in the small lobe of the kinase domain in allosteric activation; however, neither the mechanism of action of that site nor the RH domain contributions have been elucidated. To search for the allosteric site, we first indentified evolutionarily conserved sites within the RH and kinase domains presumably deterministic of protein function employing evolutionary trace (ET) methodology and crystal structures of GRK6. Focusing on a conserved cluster centered on helices 3, 9, and 10 in the RH domain, key residues of GRK5 and 6 were targeted for mutagenesis and functional assays. We found that a number of double mutations within helices 3, 9, and 10 and the N-terminus markedly reduced (50–90%) the constitutive phosphorylation of the β-2 Adrenergic Receptor (β2AR) in intact cells and phosphorylation of light-activated rhodopsin (Rho*) in vitro as compared to wild type (WT) GRK5 or 6. Based on these results, we designed peptide mimetics of GRK5 helix 9 both computationally and through chemical modifications with the goal of both confirming the importance of helix 9 and developing a useful inhibitor to disrupt the GPCR-GRK interaction. Several peptides were found to block Rho* phosphorylation by GRK5 including the native helix 9 sequence, Peptide Builder designed-peptide preserving only the key ET residues, and chemically locked helices. Most peptidomimetics showed inhibition of GRK5 activity greater than 80 % with an IC50 of ∼ 30 µM. Alanine scanning of helix 9 has further revealed both essential and non-essential residues for inhibition. Importantly, substitution of Arg 169 by an alanine in the native helix 9-based peptide gave an almost complete inhibition at 30 µM with an IC50 of ∼ 10 µM. In summary we report a previously unrecognized crucial role for the RH domain of GRK5 and 6, and the subsequent identification of a lead peptide inhibitor of protein-protein interaction with potential for specific blockade of GPCR desensitization. ^
Resumo:
Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.
Resumo:
Exogenous ligands that bind to the estrogen receptor (ER) exhibit unique pharmacologies distinct from that observed with the endogenous hormone, 17β-estradiol (ED. Differential activity among ER ligands has been observed at the level of receptor binding, promoter interaction and transcriptional activation. Furthermore, xenoestrogens can display tissue-specific agonist activity on the cellular level, functioning as an agonist in one tissue and as an antagonist in another. That the same ligand, functioning through the same receptor, can produce differing agonist responses on the cellular level indicates that there are tissue-specific determinants of agonist activity. In these studies critical molecular determinants of agonist activity were characterized for several cell types. In the normal and neoplastic myometrium a proliferative response was dependent upon activation of AF2 of the ER, functioning as a determinant of agonism in this cell type. Progesterone receptor (PR) ligands transdominantly suppressed ER-mediated transcription and proliferation in uterine leiomyoma cells, indicating that ER/PR cross-talk can modulate agonist activity in a myometrial cell background. In the breast, the agonist response to ER ligands was investigated by employing a functional genomics approach to generate gene expression profiles. Treatment of breast cancer cells with the selective estrogen receptor modulator tamoxifen largely recapitulated the expression profile induced by treatment with the agonist E2, despite the well-characterized antiproliferative effects produced by tamoxifen in this cell type. While the expression of many genes involved in regulating cell cycle progression, including fos, myc, cdc25a, stk15 and cyclin A, were induced by both E2 and tamoxifen in breast cells, treatment with the agonist E2 specifically induced the expression of cyclin D1, fra-1 , and uracil DNA glycosylase. These results suggest that the inability of tamoxifen to transactivate expression of only a few key genes, functioning as cellular gatekeepers, prevent tamoxifen-treated breast cells from entering the cell cycle. Thus, the expression of these agonist-specific marker genes is a potential determinant of agonist activity at the cellular level in the breast. Collectively, studies in the breast and uterine myometrium have identified several mechanisms whereby ER ligands modulate ER-mediated signaling and provide insights into the biology of tissue-specific agonist activity in hormone-responsive tissues. ^
Resumo:
It is not known how human immunodeficiency virus type 1 (HIV-1)-derived antagonist peptides interfere with intracellular activation of cytotoxic T lymphocytes (CTL). We identified Gag epitope variants in HIV-1-infected patients that act as antagonists of CTL responses to unmutated epitopes. We then investigated the effect that presentation of each variant has on the early events of T cell receptor (TCR) signal transduction. We found that altered peptide ligands (APL) failed to induce phosphorylation of pp36, a crucial adaptor protein involved in TCR signal transduction. We further investigated the effect that simultaneous presentation of APL and native antigen at low, physiological, peptide concentrations (1 nM) has on TCR signal transduction, and we found that the presence of APL can completely inhibit induction of the protein tyrosine phosphorylation events of the TCR signal transduction cascade.
Resumo:
Although hormone therapy with antiandrogens has been widely used for the treatment of prostate cancer, some antiandrogens may act as androgen receptor (AR) agonists that may result in antiandrogen withdrawal syndrome. The molecular mechanism of this agonist response, however, remains unclear. Using mammalian two-hybrid assay, we report that antiandrogens, hydroxyflutamide, bicalutamide (casodex), cyproterone acetate, and RU58841, and other compounds such as genistein and RU486, can promote the interaction between AR and its coactivator, ARA70, in a dose-dependent manner. The chloramphenicol acetyltransferase assay further demonstrates that these antiandrogens and related compounds significantly enhance the AR transcriptional activity by cotransfection of AR and ARA70 in a 1:3 ratio into human prostate cancer DU145 cells. Our results suggest that the agonist activity of antiandrogens might occur with the proper interaction of AR and ARA70 in DU145 cells. These findings may provide a good model to develop better antiandrogens without agonist activity.
Resumo:
The G protein-coupled μ-opioid receptor (μOR) mediates the physiological effects of endogenous opioid peptides as well as the structurally distinct opioid alkaloids morphine and etorphine. An intriguing feature of μOR signaling is the differential receptor trafficking and desensitization properties following activation by distinct agonists, which have been proposed as possible mechanisms related to opioid tolerance. Here we report that the ability of distinct opioid agonists to differentially regulate μOR internalization and desensitization is related to their ability to promote G protein-coupled receptor kinase (GRK)-dependent phosphorylation of the μOR. Although both etorphine and morphine effectively activate the μOR, only etorphine elicits robust μOR phosphorylation followed by plasma membrane translocation of β-arrestin and dynamin-dependent receptor internalization. In contrast, corresponding to its inability to cause μOR internalization, morphine is unable to either elicit μOR phosphorylation or stimulate β-arrestin translocation. However, upon the overexpression of GRK2, morphine gains the capacity to induce μOR phosphorylation, accompanied by the rescue of β-arrestin translocation and receptor sequestration. Moreover, overexpression of GRK2 also leads to an attenuation of morphine-mediated inhibition of adenylyl cyclase. These findings point to the existence of marked differences in the ability of different opioid agonists to promote μOR phosphorylation by GRK. These differences may provide the molecular basis underlying the different analgesic properties of opioid agonists and contribute to the distinct ability of various opioids to induce drug tolerance.
Resumo:
We previously demonstrated that α1B-adrenergic receptor (AR) gene transcription, mRNA, and functionally coupled receptors increase during 3% O2 exposure in aorta, but not in vena cava smooth muscle cells (SMC). We report here that α1BAR mRNA also increases during hypoxia in liver and lung, but not heart and kidney. A single 2.7-kb α1BAR mRNA was detected in aorta and vena cava during normoxia and hypoxia. The α1BAR 5′ flanking region was sequenced to −2,460 (relative to ATG +1). Transient transfection experiments identify the minimal promoter region between −270 and −143 and sequence between −270 and −248 that are required for transcription of the α1BAR gene in aorta and vena cava SMC during normoxia and hypoxia. An ATTAAA motif within this sequence specifically binds aorta, vena cava, and DDT1MF-2 nuclear proteins, and transcription primarily initiates downstream of this motif at approximately −160 in aorta SMC. Sequence between −837 and −273 conferred strong hypoxic induction of transcription in aorta, but not in vena cava SMC, whereas the cis-element for the transcription factor, hypoxia-inducible factor 1, conferred hypoxia-induced transcription in both aorta and vena cava SMC. These data identify sequence required for transcription of the α1BAR gene in vascular SMC and suggest the atypical TATA-box, ATTAAA, may mediate this transcription. Hypoxia-sensitive regions of the α1BAR gene also were identified that may confer the differential hypoxic increase in α1BAR gene transcription in aorta, but not in vena cava SMC.
Resumo:
Mutation of the highly conserved leucine residue (Leu-247) converts 5-hydroxytryptamine (5HT) from an antagonist into an agonist of neuronal homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We show here that acetylcholine (AcCho) activates two classes of single channels with conductances of 44 pS and 58 pS, similar to those activated by 5HT. However, the mean open time of AcCho-gated ion channels (11 ms) is briefer than that of 5HT-gated ion channels (18 ms). Furthermore, whereas the open time of AcCho channels lengthens with hyperpolarization, that of 5HT channels is decreased. In voltage-clamped oocytes, the apparent affinity of the α7 mutant receptor for 5HT is not modified by the presence of dihydro-β-erythroidine, which acts on the AcCho binding site in a competitive manner. This indicates a noncompetitive action of 5HT on nicotinic acetylcholine receptors. Considered together, our findings show that AcCho gates α7 mutant channels with similar conductance but with different kinetic profile than the channels gated by 5HT, suggesting that the two agonists act on different docking sites. These results will help to understand the crosstalk between cholinergic and serotonergic systems in the central nervous system.
Resumo:
Peer reviewed
Resumo:
To investigate the functional role of different α1-adrenergic receptor (α1-AR) subtypes in vivo, we have applied a gene targeting approach to create a mouse model lacking the α1b-AR (α1b−/−). Reverse transcription–PCR and ligand binding studies were combined to elucidate the expression of the α1-AR subtypes in various tissues of α1b +/+ and −/− mice. Total α1-AR sites were decreased by 98% in liver, 74% in heart, and 42% in cerebral cortex of the α1b −/− as compared with +/+ mice. Because of the large decrease of α1-AR in the heart and the loss of the α1b-AR mRNA in the aorta of the α1b−/− mice, the in vivo blood pressure and in vitro aorta contractile responses to α1-agonists were investigated in α1b +/+ and −/− mice. Our findings provide strong evidence that the α1b-AR is a mediator of the blood pressure and the aorta contractile responses induced by α1 agonists. This was demonstrated by the finding that the mean arterial blood pressure response to phenylephrine was decreased by 45% in α1b −/− as compared with +/+ mice. In addition, phenylephrine-induced contractions of aortic rings also were decreased by 25% in α1b−/− mice. The α1b-AR knockout mouse model provides a potentially useful tool to elucidate the functional specificity of different α1-AR subtypes, to better understand the effects of adrenergic drugs, and to investigate the multiple mechanisms involved in the control of blood pressure.
Resumo:
Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β-adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β-adrenergic signaling defects including down-regulation of myocardial β-adrenergic receptors (β-ARs), functional β-AR uncoupling, and an up-regulation of the β-AR kinase (βARK1). Adenoviral-mediated gene transfer of the human β2-AR or an inhibitor of βARK1 to these failing myocytes led to the restoration of β-AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of βARK1 activity in the heart.
Resumo:
Growth of mouse neural crest cultures in the presence of glial cell line-derived neurotrophic factor (GDNF) resulted in a dramatic dose-dependent increase in the number of tyrosine hydroxylase (TH)-positive cells that developed when 5% chicken embryo extract was present in the medium. In contrast, growth in the presence of bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, transforming growth factor (TGF) β1, TGF-β2, and TGF-β3 elicited no increase in the number of TH-positive cells. The TH-positive cells that developed in the presence of GDNF had neuronal morphology and contained the middle and low molecular weight neurofilament proteins. Numerous TH-negative cells with the morphology of neurons also were observed in GDNF-treated cultures. Analysis revealed that the period from 6 to 12 days in vitro was the critical time for exposure to GDNF to generate the increase in TH-positive cell number. The growth factors neurotrophin-3 and fibroblast growth factor-2 elicited increases in the number of TH-positive cells similar to that seen in response to GDNF. In contrast, nerve growth factor was unable to substitute for GDNF. These findings extend the previously reported biological activities of GDNF by showing that it can act on mouse neural crest cultures to promote the development of neurons.
Resumo:
G protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced β2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating β2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.
Resumo:
Two cannabinoid receptors have been identified: CB1, present in the central nervous system (CNS) and to a lesser extent in other tissues, and CB2, present outside the CNS, in peripheral organs. There is evidence for the presence of CB2-like receptors in peripheral nerve terminals. We report now that we have synthesized a CB2-specific agonist, code-named HU-308. This cannabinoid does not bind to CB1 (Ki > 10 μM), but does so efficiently to CB2 (Ki = 22.7 ± 3.9 nM); it inhibits forskolin-stimulated cyclic AMP production in CB2-transfected cells, but does so much less in CB1-transfected cells. HU-308 shows no activity in mice in a tetrad of behavioral tests, which together have been shown to be specific for tetrahydrocannabinol (THC)-type activity in the CNS mediated by CB1. However, HU-308 reduces blood pressure, blocks defecation, and elicits anti-inflammatory and peripheral analgesic activity. The hypotension, the inhibition of defecation, the anti-inflammatory and peripheral analgesic effects produced by HU-308 are blocked (or partially blocked) by the CB2 antagonist SR-144528, but not by the CB1 antagonist SR-141716A. These results demonstrate the feasibility of discovering novel nonpsychotropic cannabinoids that may lead to new therapies for hypertension, inflammation, and pain.