954 resultados para Álgebra lineal
Resumo:
En el campo de la matemática educativa, el concepto de periodicidad es un tema muy poco explorado, a pesar de encontrarse inmerso prácticamente en el currículo escolar de la matemática. Este concepto es ampliamente utilizado en diversos tópicos de matemáticas, sin embargo, solo existe poco trabajo de corte epistemológico al respecto, donde se encuentra el trabajo de Shama (1998), este estudio cognitivo nos plantea una problemática sobre la comprensión del estudiante, cuando éste concibe la periodicidad como un proceso y no puede transformarla en objeto. Esto conduce al estudiante a relacionar fenómenos no periódicos como periódicos y a tener preferencia por identificar un periodo de un fenómeno periódico que no es necesariamente en forma correcta. La problemática es retomada para la investigación, considerando los contextos discreto y continuo del concepto. El objetivo es diseñar una situación de tal forma que el estudiante de una nueva explicación sobre la concepción de proceso y pueda alcanzar su transformación al objeto del concepto de periodicidad. Para tal propósito se ha formulado una epistemología de la periodicidad, donde se han hallados ciertos elementos (repetición regular, desplazamiento lineal como el argumento de los fenómenos periódicos, y el comportamiento periódico de una función como un argumento contextual, la manifestación del movimiento en un todo y no en un momento, que permitan la construcción de la periodicidad. El concepto de periodicidad generalmente es tratado en el currículo como una propiedad de cierta clase de funciones llamadas periódicas. Sin embargo es factible pensar la orientación del concepto de periodicidad a través de la noción de comportamiento tendencial de las funciones, donde la epistemología del concepto esté basada en situaciones de tendencia de un comportamiento periódico. De la epistemología de la periodicidad tiene como propósito ser la base de una descomposición genética que incluya los elementos y su relación. Nuestro marco teórico en la investigación es el de la teoría APOE (Acción, Proceso, Objeto, Esquema) y el diseño de actividades, su implementación y la recolección de datos con estudiantes de precálculo y cálculo, a través de la metodología que señala la propia teoría, el ciclo ACE. Los resultados se presentan en la presentación de la investigación.
Resumo:
Sobre la base de investigaciones que realizamos previamente acerca de los errores frecuentes de nuestros alumnos en las cuestiones de Álgebra básica, que les impiden incorporar adecuadamente conceptos del Análisis Matemático, en la cátedra de esta asignatura de la Facultad de Ciencias Económicas nos propusimos realizar diversas acciones que tiendan a modificar esa situación, con el propósito de promover que el alumno emprenda un aprendizaje eficaz del Cálculo. Entre otras acciones planificamos un conjunto de clases previas al desarrollo de la asignatura en las que, sobre la base de materiales escritos de guía para el aprendizaje y con la incorporación del uso de la herramienta computacional, el alumno tendrá oportunidad de efectuar actividades de introducción-motivación sobre conocimientos previos, con respecto a las falencias más frecuentes que se han detectado, la cantidad y calidad de los errores que, en general, cometen con el uso de la matemática básica. Otras actividades son de consolidación y/o de refuerzo, de recuperación y/o ampliación a medida que se evalúa el avance del alumno. El uso de la herramienta computacional, en este caso, el Programa Matemático-Informático DERIVE, tiene por objeto proporcionar al alumno un primer contacto con el mismo y aprovecharlo como recurso pedagógico en el aula, motivante y colaborador en las realización de las actividades propuestas.
Resumo:
En este capítulo, presentamos el proceso de diseño e implementación de la unidad didáctica del cuadrado de un binomio para grado octavo. Iniciamos con la descripción de los análisis previos (análisis de contenido, análisis cognitivo y análisis de instrucción) a la implementación que permitieron producir el primer diseño de la unidad didáctica del tema. Seguidamente, detallamos el trabajo realizado en el análisis de actuación, con el cual empezamos a analizar y a revaluar aspectos del diseño implementado de acuerdo con los resultados obtenidos por los estudiantes. Justi camos el nuevo diseño de la unidad didáctica con base en los resultados de esos análisis. Por último, concluimos con algunas re exiones sobre la experiencia vivida a lo largo del proceso.
Resumo:
Este estudio de caso hace parte de una investigación que se está realizando con estudiantes sordos de grados octavo y décimo, con el propósito de lograr la comprensión/construcción del concepto de función, desde las dimensiones epistemológicas, didáctica y cognitiva. El estudio se fundamenta en el marco teórico de los registros de representación semiótica y la metodología de la Ingeniería didáctica, apoyado en el diseño, desarrollo e implementación de un software.
Resumo:
Este artículo presenta algunos resultados de investigación, que se viene desarrollando bajo el método de estudio de caso en una institución rural de la Región de Urabá, con el propósito de analizar un proceso de modelación matemática. Esto fue posible, al permitirles a los estudiantes generar modelos lineales desde una situación en el contexto del cultivo plátano. Y al final, se presentan algunos resultados, resaltando el papel del contexto cotidiano incluido en la enseñanza de las Matemáticas, para mediar el uso de las letras como variables, en correspondencia entre el contexto cotidiano y las matemáticas.
Resumo:
Exponemos en este documento algunos resultados de una investigación cualitativa que tiene como objetivo diseñar experiencias que posibiliten el desarrollo de habilidades comunicativas (NCTM, 2000) en estudiantes de once grado, y analizar como dichas habilidades contribuyen en el progreso de su pensamiento algebraico. Este estudio surge para atender una problemática identificada en estudiantes de nuevo ingreso a la universidad, quienes en una prueba inicial dejan ver que sus respuestas incorrectas refieren más a su baja interpretación de enunciados que a la incorrecta aplicación de algoritmos. Para la consecución de dicho objetivo se diseña e implementa un plan de intervención con algunos casos de estudio, quienes en las primeras etapas de implementación del plan diseñado recaen en las mismas dificultades.
Resumo:
Esta intervención se realizó con estudiantes con rendimiento académico sobresaliente en un colegio distrital de la ciudad de Bogotá. El instrumento aplicado es del profesor Pedro Javier Rojas y fue discutido en el seminario de Transición Aritmética-Álgebra de la Maestría en Educación de la Universidad Distrital Francisco José de Caldas. Se presentan los resultados de la implementación de un instrumento que tiene como fin, en este caso, indagar sobre los significados de la letra en contextos numéricos en estudiantes de grado 8° a 11°. El análisis se hace a partir de lo que se esperaba antes de la aplicación y lo que realmente ocurrió al aplicarlo.
Resumo:
Después de una "moda" que remite, como lo fue en su día la tremenda abstracción imperante en las matemáticas de la EGB, totalmente impropia de la madurez que los estadios evolutivos determinan, se vuelve a prestar atención a fijar los conceptos sobre representaciones visuales que den soporte a los conceptos y configuraciones intelectuales que inevitablemente tienen un cierto grado de abstracción, posibilitando una mejor comprensión de los mismos.
Resumo:
La Constitución de Cádiz (1812) inicia el origen de la enseñanza secundaria en España. Dichos estudios corren parejos con el desarrollo de la burguesía como clase diferenciada, y como tal se identifican los nuevos estudios con la nueva clase social. Paralelamente al nacimiento de la secundaria, los contenidos en matemáticas de los programas, se van abriendo paso y quitando horas a los tradicionales de humanidades. El recorrido histórico termina con la trascendental Ley Moyano en 1857.
Resumo:
Existe una gran cantidad de páginas web que nos ofrecen herramientas concretas para poder utilizarlas directamente en el aula de matemáticas, pero también podemos localizar webs que ofrecen un auténtico arsenal de recursos que nos pueden ser útiles para los distintos niveles educativos. De entre esas últimas, vamos a destacar en este número de SUMA la web cuya dirección es www.ematematicas.net
Resumo:
Desde esta sección MatemásTIC intentamos en cada número dar a conocer alguna herramienta informática relacionada con las matemáticas a la que poder sacarle partido en el aula. Dada la apuesta que desde distintas comunidades autónomas se ha hecho o se está haciendo por el software libre, las herramientas que damos a conocer son para este tipo de sistemas, existiendo en algunos casos la réplica de la misma aplicación para sistemas propietarios.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: Solo existen dos números mórficos, el número de oro y el número plástico.
Resumo:
Seguimos adelante con el recorrido que hemos comenzado por las TIC y su uso en el aula de matemáticas en esta sección MatemásTIC. Si el primer número de la sección lo dedicamos a una aplicación de software libre para el desarrollo del cálculo mental y el segundo a una aplicación para la práctica de la geometría interactiva, en esta tercera hemos optado por una aplicación lúdica de contenido matemático.
Resumo:
El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: “solo existen dos números mórficos, el número de oro y el número plástico”.
Resumo:
Cuando enseñamos a los alumnos a resolver problemas, solemos abusar de la utilización de algoritmos encaminados a encontrar la solución óptima, evitando las dificultades que puede suponer la introducción de reglas más o menos complejas en el diseño de dicho algoritmo. Pero resolver un problema es mucho más que aplicar un algoritmo de forma mecánica, supone encontrar una respuesta coherente a una serie de datos relacionados dentro de un contexto. Es por esto que presentamos esta práctica, donde la utilización de un algoritmo para resolver un problema nos lleva a encontrar soluciones que descartaremos como útiles.