933 resultados para zwitterionic surfactant
Resumo:
The self-assembly in solution of puroindoline-a (Pin-a), an amphiphilic lipid binding protein from common wheat, was investigated by small angle neutron scattering, dynamic light scattering and size exclusion chromatography. Pin-a was found to form monodisperse prolate ellipsoidal micelles with a major axial radius of 112 +/- 4.5 A ˚ and minor axial radius of 40.4 +/- 0.18 A ˚ . These protein micelles were formed by the spontaneous self-assembly of 38 Pin-a molecules in solution and were stable over a wide pH range (3.5–11) and at elevated temperatures (20–65 degC). Pin-a micelles could be disrupted upon addition of the non-ionic surfactant dodecyl-b-maltoside, suggesting that the protein self-assembly is driven by hydrophobic forces, consisting of intermolecular interactions between Trp residues located within a well-defined Trp-rich domain of Pin-a.
Resumo:
B. subtilis under certain types of media and fermentation conditions can produce surfactin, a biosurfactant which belongs to the lipopeptide class. Surfactin has exceptional surfactant activity, and exhibits some interesting biological characteristics such as antibacterial activity, antitumoral activity against ascites carcinoma cells, and a hypocholesterolemic activity that inhibits cAMP phosphodiesterase, as well as having anti-HIV properties. A cost effective recovery and purification of surfactin from fermentation broth using a two-step ultrafiltration (UF) process has been developed in order to reduce the cost of surfactin production. In this study, competitive adsorption of surfactin and proteins at the air-water interface was studied using surface pressure measurements. Small volumes of bovine serum albumin (BSA) and β-casein solutions were added to the air-water interface on a Langmuir trough and allowed to stabilise before the addition of surfactin to the subphase. Contrasting interfacial behaviour of proteins was observed with β-casein showing faster initial adsorption compared to BSA. On introduction of surfactin both proteins were displaced but a longer time were taken to displace β-casein. Overall the results showed surfactin were highly surface-active by forming a β-sheet structure at the air-water interface after reaching its critical micelle concentration (CMC) and were effective in removing both protein films, which can be explained following the orogenic mechanism. Results showed that the two-step UF process was effective to achieve high purity and fully functional surfactin.
Resumo:
The aim of this study is to investigate the separation of astaxanthin from the cells of Phaffia rhodozyma using colloidal gas aphrons (CGA), which are surfactant stabilized microbubbles, in a flotation column. It was reported in previous studies that optimum recoveries are achieved at conditions that favor electrostatic interactions. Therefore, in this study, CGA generated from the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) were applied to suspensions of cells pretreated with NaOH. The different operation modes (batch or continuous) and the effect of volumetric ratio of CGA to feed, initial concentration of feed, operating height, and flow rate of CGA on the separation of astaxanthin were investigated. The volumetric ratio was found to have a significant effect on the separation of astaxanthin for both batch and continuous experiments. Additionally, the effect of homogenization of the cells on the purity of the recovered fractions was investigated, showing that the homogenization resulted in increased purity. Moreover, different concentrations of surfactant were used for the generation of CGA for the recovery of astaxanthin on batch mode; it was found that recoveries up to 98% could be achieved using CGA generated from a CTAB solution 0.8 mM, which is below the CTAB critical micellar concentration (CMC). These results offer important information for the scale-up of the separation of astaxanthin from the cells of P. rhodozyma using CGA.
Resumo:
Colloidal gas aphrons (CGA) have previously been defined as surfactant stabilized gas microbubbles and characterized for a number of surfactants in terms of stability, gas holdup and bubble size even though there is no conclusive evidence of their structure (that is, orientation of surfactant molecules at the gas–liquid interface, thickness of gas–liquid interface, and/or number of surfactant layers). Knowledge of the structure would enable us to use these dispersions more efficiently for their diverse applications (such as for removal of dyes, recovery of proteins, and enhancement of mass transfer in bioreactors). This study investigates dispersion and structural features of CGA utilizing a range of novel predictive (for prediction of aphron size and drainage rate) and experimental (electron microscopy and X-ray diffraction) methods. Results indicate structural differences between foams and CGA, which may have been caused by a multilayer structure of the latter as suggested by the electron and X-ray diffraction analysis.
Resumo:
The synthesis of 2D hexagonal mesoporous platinum films with biaxial, in-plane pore alignment is demonstrated by electrodeposition through an aligned lyotropic liquid crystal templating phase. Shear force is used to align a hexagonal lyotropic liquid crystalline templating phase of an inexpensive and a commercially available surfactant, C16EO10, at the surface of an electrode. Electrodeposition and subsequent characterisation of the films produced shows that the orientation and alignment of the phase is transferred to the deposited material. Transmission electron microscopy confirms the expected nanostructure of the films, whilst transmission and grazing incidence small angle X-ray scattering analysis confirms biaxial, in plane alignment of the pore structure. In addition further electrochemical studies in dilute sulfuric acid and methanol show that the pores are accessible to electrolyte solution as indicated by a large current flow; the modified electrode therefore has a high surface area, that catalyses methanol oxidation, and the pores have a very large aspect ratio (of theoretical maximum 2 × 105). Films with such aligned mesoporosity will advance the field of nanotechnology where the control of pore structure is paramount. The method reported is sufficiently generic to be used to control the structure and order of many materials, thus increasing the potential for the development of a wide range of novel electronic and optical devices.
Resumo:
The influence of a non-ionic polymeric surfactant on the self-assembly of a peptide amphiphile (PA) that forms nanotapes is investigated using a combination of microscopic, scattering and spectroscopic techniques. Mixtures of Pluronic copolymer P123 with the PA C16-KTTKS in aqueous solution were studied at a fixed concentration of the PA at which it is known to self-assemble into extended nanotapes, but varying P123 concentration. We find that P123 can disrupt the formation of C16- KTTKS nanotapes, leading instead to cylindrical nanofibril structures. The spherical micelles formed by P123 at room temperature are disrupted in the presence of the PA. There is a loss of cloudiness in the solutions as the large nanotape aggregates formed by C16-KTTKS are broken up, by P123 solubilization. At least locally, b-sheet structure is retained, as confirmed by XRD and FTIR spectroscopy, even for solutions containing 20 wt% P123. This indicates, unexpectedly, that peptide secondary structure can be retained in solutions with high concentration of non-ionic surfactant. Selfassembly in this system exhibits slow kinetics towards equilibrium, the initial self-assembly being dependent on the order of mixing. Heating above the lipid chain melting temperature assists in disrupting trapped non-equilibrium states.
Resumo:
Adsorption of glycine on Ptf111g under UHV conditions and in different aqueous environments was studied by XPS (UHV and ambient pressure) and NEXAFS. Under UHV conditions, glycine adsorbs in its neutral molecular state up to about 0.15 ML. Further deposition leads to the formation of an additional zwitterionic species, which is in direct contact with the substrate surface, followed by the growth of multilayers, which also consist of zwitterions. The neutral surface species is most stable and decomposes at 360 K through a multi-step process which includes the formation of methylamine and carbon monoxide. When glycine and water are co-adsorbed in UHV at low temperatures (< 170 K) inter-layer diffusion is inhibited and the surface composition depends on the adsorption sequence. Water adsorbed on top of a glycine layer does not lead to significant changes in its chemical state. When glycine is adsorbed on top of a pre-adsorbed chemisorbed water layer or thick ice layer, however, it is found in its zwitterionic state, even at low coverage. No difference is seen in the chemical state of glycine when the layers are exposed to ambient water vapor pressure up to 0.2 Torr at temperatures above 300 K. Also the decomposition temperature stays the same, 360 K, irrespective of the water vapor pressure. Only the reaction path of the decomposition products is affected by ambient water vapor.
Resumo:
The surfactant-like peptide (Ala)6(Arg) is found to self-assemble into 3 nm-thick sheets in aqueous solution. Scanning transmission electron microscopy measurements of mass per unit area indicate a layer structure based on antiparallel dimers. At higher concentration the sheets wrap into unprecedented ultrathin helical ribbon and nanotube architectures.
Resumo:
The self-assembly in aqueous solution of the alanine-rich peptide A12R2 containing twelve alanine residues and two arginine residues has been investigated. This oligomeric peptide was synthesized via NCA-polymerization methods. The surfactant-like peptide is found via FTIR to form antiparallel dimers which aggregate into twisted fibrils, as revealed by cryogenic-transmission electron microscopy. The fibril substructure is probed via detailed X-ray scattering experiments, and are uniquely comprised of twisted tapes only 5 nm wide, set by the width of the antiparallel A12R2 dimers. The packing of the alanine residues leads to distinct “b-sheet” spacings compared to those for amyloid-forming peptides. For this peptide, b-sheet structure coexists with some a-helical content. These ultrafine amyloid fibrils present arginine at high density on their surfaces, and this may lead to applications in nanobiotechnology.
Resumo:
The self-assembly in aqueous solution of three lipopeptides obtained from Bacillus subtilis has been investigated. The lipopeptides surfactin, plipastatin and mycosubtilin contain distinct cyclic peptide headgroups as well as differences in alkyl chain length, branching and chain length distribution. Cryogenic transmission electron microscopy and X-ray scattering reveal that surfactin and plipastatin aggregate into 2 nm-radius spherical micelles, whereas in complete contrast mycosubtilin self-assembles into extended nanotapes based on bilayer ordering of the lipopeptides. Circular dichroism and FTIR spectroscopy indicate the presence of turn structures in the cyclic peptide headgroup. The unexpected distinct mode of self-assembly of mycosubtilin compared to the other two lipopeptides is ascribed to differences in the surfactant packing parameter. This in turn is due to specific features of the conformation of the peptide headgroup and alkyl chain branching.
Resumo:
The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined.
Resumo:
The preparation of nonaqueous microemulsions using food-acceptable components is reported. The effect of oil on the formation of microemulsions stabilized by lecithin (Epikuron 200) and containing propylene glycol as immiscible solvent was investigated. When the triglycerides were used as oil, three types of phase behavior were noted, namely, a two-phase cloudy region (occurring at low lecithin concentrations), a liquid crystalline (LC) phase (occurring at high surfactant and low oil concentrations), and a clear monophasic microemulsion region. The extent of this clear one-phase region was found to be dependent upon the molecular volume of the oil being solubilized. Large molecular volume oils, such as soybean and sunflower oils, produced a small microemulsion region, whereas the smallest molecular volume triglyceride, tributyrin, produced a large, clear monophasic region. Use of the ethyl ester, ethyl oleate, as oil produced a clear, monophasic region of a size comparable to that seen with tributyrin. Substitution of some of the propylene glycol with water greatly reduced the extent of the clear one-phase region and increased the extent of the liquid crystalline region. In contrast, ethanol enhanced the clear, monophasic region by decreasing the LC phase. Replacement of some of the lecithin with the micelle-forming nonionic surfactant Tween 80 to produce mixed lecithin/Tween 80 mixtures of weight ratios (Km) 1:2 and 1:3 did not significantly alter the phase behavior, although there was a marginal increase in the area of the two-phase, cloudy region of the phase diagram. The use of the lower phosphatidylcholine content lecithin, Epikuron 170, in place of Epikuron 200 resulted in a reduction in the LC region for all of the systems investigated. In conclusion, these studies show that it is possible to prepare one-phase, clear lecithin-based microemulsions over a wide range of compositions using components that are food-acceptable.
Resumo:
Phase studies have been performed for quaternary systems composed of egg lecithin, cosurfactant, water and oil. The lecithin used was the commercially available egg lecithin Ovothin 200 (which comprises ≥ 92% phosphatidylcholine). The cosurfactants employed were propanol and butanol, and these were used at lecithin/cosurfactant mixing ratios (Km) of 1:1 and 1.94:1 (weight basis). Six polar oils were investigated, including the alkanoic acids, octanoic and oleic, their corresponding ethyl esters and the medium and long chain triglycerides, Miglyol 812 and soybean oil. All oils, irrespective of the alcohol and the Km used, gave rise to systems that produced a stable isotropic region along the surfactant/oil axis (designated as a reverse microemulsion system). In addition, the systems incorporating propanol at both Km and butanol at a Km of 1.94: 1, generally gave rise to a liquid crystalline region and, in some cases, a second isotropic non-birefingent area (designated as a normal microemulsion system). The phase behaviour observed was largely dependent upon the alcohol and Km used and the size and the polarity of the oil present.
Resumo:
Amyloid fibrils are formed by a model surfactant-like peptide (Ala)10-(His)6 containing a hexahistidine tag. This peptide undergoes a remarkable two-step self-assembly process with two distinct critical aggregation concentrations (cac’s), probed by fluorescence techniques. A micromolar range cac is ascribed to the formation of prefibrillar structures, whereas a millimolar range cac is associated with the formation of well-defined but more compact fibrils. We examine the labeling of these model tagged amyloid fibrils using Ni-NTA functionalized gold nanoparticles (Nanogold). Successful labeling is demonstrated via electron microscopy imaging. The specificity of tagging does not disrupt the β-sheet structure of the peptide fibrils. Binding of fibrils and Nanogold is found to influence the circular dichroism associated with the gold nanoparticle plasmon absorption band. These results highlight a new approach to the fabrication of functionalized amyloid fibrils and the creation of peptide/nanoparticle hybrid materials.
Resumo:
Adsorption of l-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π ⁎ resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√13x2√13)R13° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.