480 resultados para xylose isomerase
Resumo:
Pulsed field gel electrophoresis of 82 intestinal spirochaete isolates showed specific differentiation of Serpulina pilosicoli and Serpulina hyodysenteriae although considerable heterogeneity was observed, especially amongst S. pilosicoli isolates. In several cases genotypically similar isolates originated from different animals suggesting that cross-species transmission may have occurred. The Caco-2 and Caco-21HT29 cell models have been proposed as potentially realistic models of intestinal infection. Quantitation of adhesion to the cells showed isolate 3 82/91 (from a bacteraemia) to adhere at significantly greater numbers than any other isolate tested. This isolate produced a PFGE profile which differed from other S. pilosicoli isolates and so would be of interest for further study. Comparison of bacteraemic and other S. pilosicoli isolates suggested that bacteraemic isolates were not more specifically adapted for adhesion to, or invasion of the epithelial cell layer than other S. pilosicoli isolates. Genotypically similar isolates from differing animal origins adhered to the Caco-2 model at similar levels. Generation of a random genomic library of S. pilosicoli and screening with species specific monoclonal antibody has enabled the identification of a gene sequence encoding a protein which showed significant homology with an ancestral form of the enzyme pyruvate oxidoreductase. Immunoscreening with polyclonal serum identified the sequences of two gene clusters and a probable arylsulphatase. One gene cluster represented a ribosomal gene cluster which has a similar molecular arrangement to Borrelia burgdorjeri, Treponema pallidum and Thermatoga maritima. The other gene cluster contained an ABC transporter protein, sorbitol dehydrogenase and phosphomannose isomerase. An ELISA type assay was used to demonstrate that isolates of S. pilosicoli could adhere to components of the extracellular matrix such as collagen (type 1), fibronectin, laminin, and porcine gastric mucin.
Resumo:
Grewia polysaccharide gum, a potential pharmaceutical excipient was extracted from the inner stem bark of Grewia mollis, thereupon drying was achieved by three techniques: air-drying, freeze-drying and spray-drying. Analysis of the monosaccharide composition including 1H and 13C NMR spectroscopic analysis of the polysaccharide gum was carried out. The effect of the drying methods on the physicochemical properties of the gum was evaluated by Fourier transformed infra-red (FT-IR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry and gel permeation chromatography. Monosaccharide sugar analysis revealed that the gum is composed of glucose, rhamnose, galactose, arabinose and xylose as the main neutral sugars. These were supported by the results from 1H and 13C NMR spectroscopic analysis. FT-IR and solid-state NMR results indicated that drying technique has little effect on the structure of the polysaccharide gum but XPS showed that surface chemistry of the gum varied with drying methods. Thermogravimetric analyses showed that oxidation onset varied according to the drying method. The molecular weight was also dependent on the drying technique. For industrial extrapolation, air-drying may be preferable to spray-drying and freeze-drying when relative cost, product stability and powder flow are required, for example in tablet formulation. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.
Resumo:
Protein coding genes are comprised of protein-coding exons and non-protein-coding introns. The process of splicing involves removal of the introns and joining of the exons to form a mature messenger RNA, which subsequently undergoes translation into polypeptide. The spliceosome is a large, RNA/protein assembly of five small nuclear RNAs as well as over 300 proteins, which catalyzes intron removal and exon ligation. The selection of specific exons for inclusion in the mature messenger RNA is spatiotemporally regulated and results in production of an enormous diversity of polypeptides from a single gene locus. This phenomenon, known as alternative splicing, is regulated, in part, by protein splicing factors, which target the spliceosome to exon/intron boundaries. The first part of my dissertation (Chapters II and III) focuses on the discovery and characterization of the 45 kilodalton FK506 binding protein (FKBP45), which I discovered in the silk moth, Bombyx mori, as a U1 small nuclear RNA binding protein. This protein family binds the immunosuppressants FK506 and rapamycin and contains peptidyl-prolyl cis-trans isomerase activity, which converts polypeptides from cis to trans about a proline residue. This is the first time that an FKBP has been identified in the spliceosome. The second section of my dissertation (Chapters IV, V, VI and VII) is an investigation of the potential role of small nuclear RNA sequence variants in the control of splicing. I identified 46 copies of small nuclear RNAs in the 6X whole genome shotgun of the Bombyx mori p50T strain. These variants may play a role in differential binding of specific proteins that mediate alternative splicing. Along these lines, further investigation of U2 snRNA sequence variants in Bombyx mori demonstrated that some U2 snRNAs preferentially assemble into high molecular weight spliceosomal complexes over others. Expression of snRNA variants may represent another mechanism by which the cell is able to fine tune the splicing process.
Resumo:
Most pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds. Formation of the correct disulfide bonds is essential for stability in almost all cases. Disulfide containing proteins can be rapidly and inexpensively overexpressed in bacteria. However, the overexpressed proteins usually form aggregates inside the bacteria, called inclusion bodies, which contains inactive and non-native protein. To obtain native protein, inclusion bodies need to be isolated and resolubilized, and then the resulting protein refolded in vitro. In vitro protein folding is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. The most commonly used redox buffer contains reduced and oxidized glutathione. Recently, aliphatic dithiols and aromatic monothiols have been employed as redox buffers. Aliphatic dithiols improved the yield of native protein as compared to the aliphatic thiol, glutathione. Dithiols mimic the in vivo protein folding catalyst, protein disulfide isomerase, which has two thiols per active site. Furthermore, aromatic monothiols increased the folding rate and yield of lysozyme and RNase A relative to glutathione. By combining the beneficial properties of aliphatic dithiols and aromatic monothiols, aromatic dithiols were designed and were expected to increase in vitro protein folding rates and yields. Aromatic monothiols (1-4) and their corresponding disulfides (5-8), two series of ortho- and para-substituted ethylene glycol dithiols (9-15), and a series of aromatic quaternary ammonium salt dithiols (16-17) were synthesized on a multigram scale. Monothiols and disulfides (1-8) were utilized to fold lysozyme and bovine pancreatic trypsin inhibitor. Dithiols (11-17) were tested for their ability to fold lysozyme. At pH 7.0 and pH 8.0, and high protein concentration (1 mg/mL), aromatic dithiols (16, 17) and a monothiol (3) significantly enhanced the in vitro folding rate and yield of lysozyme relative to the aliphatic thiol, glutathione. Additionally, aromatic dithiols (16, 17) significantly enhance the folding yield as compared to the corresponding aromatic monothiol (3). Thus, the folding rate and yield enhancements achieved in in vitro protein folding at high protein concentration will decrease the volume of renaturation solution required for large scale processes and consequently reduce processing time and cost.
Resumo:
Protein coding genes are comprised of protein-coding exons and non-protein-coding introns. The process of splicing involves removal of the introns and joining of the exons to form a mature messenger RNA, which subsequently undergoes translation into polypeptide. The spliceosome is a large, RNA/protein assembly of five small nuclear RNAs as well as over 300 proteins, which catalyzes intron removal and exon ligation. The selection of specific exons for inclusion in the mature messenger RNA is spatio-temporally regulated and results in production of an enormous diversity of polypeptides from a single gene locus. This phenomenon, known as alternative splicing, is regulated, in part, by protein splicing factors, which target the spliceosome to exon/intron boundaries. The first part of my dissertation (Chapters II and III) focuses on the discovery and characterization of the 45 kilodalton FK506 binding protein (FKBP45), which I discovered in the silk moth, Bombyx mori, as a U1 small nuclear RNA binding protein. This protein family binds the immunosuppressants FK506 and rapamycin and contains peptidyl-prolyl cis-trans isomerase activity, which converts polypeptides from cis to trans about a proline residue. This is the first time that an FKBP has been identified in the spliceosome. The second section of my dissertation (Chapters IV, V, VI and VII) is an investigation of the potential role of small nuclear RNA sequence variants in the control of splicing. I identified 46 copies of small nuclear RNAs in the 6X whole genome shotgun of the Bombyx mori p50T strain. These variants may play a role in differential binding of specific proteins that mediate alternative splicing. Along these lines, further investigation of U2 snRNA sequence variants in Bombyx mori demonstrated that some U2 snRNAs preferentially assemble into high molecular weight spliceosomal complexes over others. Expression of snRNA variants may represent another mechanism by which the cell is able to fine tune the splicing process.
Resumo:
Prospecting pharmacological active polysaccharides from agricultural byproducts, such as corncobs, is an underexplored practice in the scientific community. Thus, this work aims to expand knowledge about pharmacological activities of polysaccharides extracted from corncobs. From corn cob flour a extract was obtained by ultrasound waves in an alkaline medium, and the end of the process the product was termed PECC (polysaccharidic extract from corncobs). This extract was physicochemical characterized and evaluated by in vitro assays as an antioxidant, cytotoxic, anticoagulant and imunomodulator agent. Results indicated significant activity metal chelating by PECC, and the use of PECC in cell culture cells showed no toxic effects to normal cell lines, but toxic action against HeLa tumor cells due promoting cell death by apoptosis. In addition, other pharmacological effects were observed, the PECC decreased nitric oxide (NO) production by activated macrophages, and prolonged blood clotting time through APTT assay. Then methanolic, ethanolic and ketone fractions were obtained from fractionation of PECC polysaccharides. Five methanolic fractions, six ethanolic fractions and two ketones were obtained; and all fractions were evaluated for antioxidant, cytotoxic, anticoagulant, immunomodulatory activities. E1.4 fraction exhibited significant metal chelating effect, a toxic action to induce apoptosis in HeLa cells, decreased NO production by activated macrophages, and extended blood clotting time. These results showed that the PECC pharmacological active polysaccharides would be present in the fraction E1.4. From fractionation of E1.4 polysaccharide six subfractions with different sizes were obtained: <3; 3-10; 10-30; 30-50; 50-100 and >100 KDa. About 80% of E1.4 polysaccharides had lower size to 10 KDa, and all the subfractions showed over 61% sugar in their chemical compositions. These subfractions exhibited different monosaccharide compositions, but xylose was presented in all of them. The subfractions exhibited distinct pharmacological effects in in vitro assays. Smaller subfractions (<30 KDa) had highest metal chelating activity and greater toxic action in tumor cells. The intermediate fractions (between 30-100 KDa) decreased more NO production of activated macrophages, for other side, the larger size (>100 KDa) modulated a greater number of inflammatory cytokines, and the had greatest anticoagulant effect. Therefore, when analyzing all the results together it is evident that the PECC pharmacological polysaccharides are heteroxylans, and were concentrated in E1.4 fraction, and heteroxilanas pharmacological effects depends on their molecular size. Thus, corncobs could be used as source from molecules with biotechnology potential
Resumo:
In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.
Resumo:
In Brazil many types of bioproducts and agroindustrial waste are generated currently, such as cacashew apple bagasse and coconut husk, for example. The final disposal of these wastes causes serious environmental issues. In this sense, waste lignocellulosic content, as the shell of the coconut is a renewable and abundant raw material in which its use has an increased interest mainly for the 2nd generation ethanol production. The hydrolysis of cellulose to reducing sugars such as glucose and xylose is catalysed by a group of enzymes called cellulases. However, the main bottleneck in the enzymatic hydrolysis of cellulose is the significant deactivation of the enzyme that shows irreversible adsorption mechanism leading to reduction of the cellulose adsorption onto cellulose. Studies have shown that the use of surfactants can modify the surface property of the cellulose therefore minimizing the irreversible binding. The main objective of the present study was to evaluate the influence of chemical and biological surfactants during the hydrolysis of coconut husk which was subjected to two pre-treatment in order to improve the accessibility of the enzymes to the cellulose, removing this way, part of the lignin and hemicellulose present in the structure of the material. The pre-treatments applied to coconut bagasse were: Acid/Alkaline using 0.6M H2SO4 followed by 1M NaOH, and the one with Alkaline Hydrogen Peroxide at a concentration of 7.35% (v/v) and pH 11.5. Both the material no treatment and pretreated were characterized using analysis of diffraction X-ray (XRD), Scanning Electron Microscopy (SEM) and methods established by NREL. The influence of both surfactants, chemical and biological, was used at concentrations below the critical micelle concentration (CMC), and the concentrations equal to the CMC. The application of pre-treatment with coconut residue was efficient for the conversion to glucose, as well as for the production of total reducing sugars, it was possible to observe that the pretreatment fragmented the structure as well as disordered the fibers. Regarding XRD analysis, a significant increase in crystallinity index was observed for pretreated bagasse acid/alkali (51.1%) compared to the no treatment (31.7%), while that for that treated with PHA, the crystallinity index was slightly lower, around 29%. In terms of total reducing sugars it was not possible to observe a significant difference between the hydrolysis carried out without the use of surfactant compared to the addition of Triton and rhamnolipid. However, by observing the conversions achieved during the hydrolysis, it was noted that the best conversion was using the rhamnolipíd for the husk pretreated with acid/alkali, reaching a value of 33%, whereas using Triton the higher conversion was 23.8%. The coconut husk is a residue which can present a high potential to the 2nd generation ethanol production, being the rhamonolipid a very efficient biosurfactant for use as an adjuvant in the enzymatic process in order to act on the material structure reducing its recalcitrance and therefore improving the conditions of access for enzymes to the substrate increasing thus the conversion of cellulose to glucose.
Resumo:
Dissolved organic matter (DOM) was isolated with XAD-2 and 4 resins from different water masses of the Greenland Sea and Fram Strait. The contribution of XAD-extractable dissolved organic carbon (DOC), operationally defined as 'recalcitrant' or humic substances, to total DOC was in the range of 45 ± 9% in surface waters and 60 ± 6% in deep waters. The carbohydrate concentration and composition were determined using the l-tryptophan/sulfuric acid method (for the bulk carbohydrate concentration, TCHO) and high performance anion-exchange chromatography after sulfuric acid hydrolysis (for the distribution of total hydrolysable neutral sugars, THNS). Carbohydrates contributed up to 6.8% to both total and recalcitrant DOC. TCHO contribution to total DOC decreased with depth from on average 4.1 ± 1.2% in surface waters to 2.2 ± 1.0% in deep waters, whereas the THNS contribution was similar in both layers, accounting for 2.5 ± 1.6% (surface) and 2.4 ± 0.2% (at depth). TCHO contribution to XAD-extractable DOC also decreased with depth from 4.5 ± 1.7% to 2.1 ± 1.0%, whereas THNS contribution was almost constant, with yields of 0.5 ± 0.3% for surface samples and 0.6 ± 0.1% at depth. The molecular size distribution of the recalcitrant DOM showed for all fractions a clear trend towards small molecules in the deep sea. More than half of the XAD-extractable carbohydrates of surface samples and more than 70% of deep sea samples were found in the nonpolar fraction from XAD, which was eluted with methanol. Glucose was the dominant carbohydrate in the surface water samples, whereas in the deep sea the composition was more uniform. In the XAD extracts, the compositions were less variable than in the original samples. The neutral sugar composition, in particular glucose and the deoxysugars, is indicative of the diagenetic state of the extracted DOM. The molar ratio (fucose + rhamnose)/(arabinose + xylose) was lowest for deep sea extractable DOM, indicating a high contribution of material modified by microorganisms. The THNS composition and distribution reveal that "recalcitrant" carbohydrates are heteropolysaccharides, carbohydrate units incorporated into a framework of a highly nonpolar structure with a lack of functional groups.
Resumo:
The chemical composition of surface associated metabolites of two Fucus species (Fucus vesiculosus and Fucus serratus) was analysed by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Method: The two perennial brown macroalgae F. vesiculosus and F. serratus were sampled monthly at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) over an entire year (August 2012 - July 2013). Per month and species six non-fertile Fucus individuals were collected from mixed stands at a depth of 0.5 m under mid water level. For surface extraction approx. 50 g of the upper 5-10 cm apical thalli tips were cut off per species. The surface extraction of Fucus was performed according to the protocol of de Nys and co-workers (1998) with minor modifications (see Rickert et al. 2015). GC/EI-MS measurements were performed with a Waters GCT premier (Waters, Manchester, UK) coupled to an Agilent 6890N GC equipped with a DB-5 ms 30 m column (0.25 mm internal diameter, 0.25 mM film thickness, Agilent, USA). The inlet temperature was maintained at 250°C and samples were injected in split 10 mode. He carrier gas flow was adjusted to 1 ml min-1. Alkanes were used for referencing of retention times. For further details (GC-MS sample preparation and analysis) see the related publication (Rickert et al. submitted to PLOS ONE).
Resumo:
Sediment and interstitial water samples recovered during DSDP Leg 93 at Site 603 (lower continental rise off Cape Hatteras) were analyzed for a series of geochemical facies indicators to elucidate the nature and origin of the sedimentary material. Special emphasis was given to middle Cretaceous organic-matter-rich turbidite sequences of Aptian to Turanian age. Organic carbon content ranges from nil in pelagic claystone samples to 4.2% (total rock) in middle Cretaceous carbonaceous mudstones of turbiditic origin. The organic matter is of marine algal origin with significant contributions of terrigenous matter via turbidites. Maturation indices (vitrinite reflectance) reveal that the terrestrial humic material is reworked. Maturity of autochthonous material (i.e., primary vitrinite) falls in the range of 0.3 to 0.6% Carbohydrate, hydrocarbon, and microscopic investigations reveal moderate to high microbial degradation. Unlike deep-basin black shales of the South and North Atlantic, organic-carbon-rich members of the Hatteras Formation lack trace metal enrichment. Dissolved organic carbon (DOC) in interstitial water samples ranges from 34.4 ppm in a sandstone sample to 126.2 ppm in an organic-matter-rich carbonaceous claystone sample. One to two percent of DOC is carbohydratecarbon.
Resumo:
This work evaluates the environmental performance of using pulp and paper sludge as feedstock for the production of second generation ethanol. An ethanol plant for converting 5400 tons of dry sludge/year was modelled and evaluated using a cradle-to-gate life cycle assessment approach. The sludge is a burden for pulp and paper mills that is mainly disposed in landfilling. The studied system allows for the valorisation of the waste, which due to its high polysaccharide content is a valuable feedstock for bioethanol production. Eleven impact categories were analysed and the results showed that enzymatic hydrolysis and neutralisation of the CaCO3 are the environmental hotspots of the system contributing up to 85% to the overall impacts. Two optimisation scenarios were evaluated: (1) using a reduced HCl amount in the neutralisation stage and (2) co-fermentation of xylose and glucose, for maximal ethanol yield. Both scenarios displayed significant environmental impact improvements.
Resumo:
As microalgas podem ser consideradas como um dos mais eficientes sistemas biológicos de transformação de energia solar em compostos orgânicos. Quando cultivadas em meios adequados, certas espécies podem duplicar sua biomassa diariamente. Além disso, possuem inúmeras vantagens, como: elevada velocidade de crescimento; potencial para absorver CO2, reduzindo assim a quantidade de emissões deste gás na atmosfera e diminuindo o efeito estufa. O objetivo do trabalho foi estudar o efeito do uso de pentoses no cultivo de Chlorella minutissima, Chlorella vulgaris, Chlorella homosphaera, Dunaliella salina, Spirulina paracas e Synechococcus nidulans, avaliando o perfil cinético do crescimento e a capacidade de produção de carboidratos e proteínas. Para o cultivo das microalgas foram utilizados os meios: Zarrouk, Bristol`S Modificado e DUN. Em todos os meios o componente nitrogenado foi reduzido pela metade e utilizado 1%, 5%, 10%, 20% e 30% de pentoses, com concentrações de xilose e arabinose que representassem as mesmas presentes em caldo hidrolisado do bagaço de cana de açúcar pré-tratado. Os cultivos foram realizados em fotobiorreatores de 2 L, mantidos em estufa a 30 ºC, fotoperíodo de 12h claro/escuro e 2500 Lx, com agitação a uma vazão de 0,75 v.v.m. . O crescimento de biomassa foi monitorado diariamente pela densidade ótica das culturas em espectrofotômetro a 670nm. Foram avaliados parâmetros cinéticos como a concentração máxima de biomassa, produtividade máxima e velocidade específica máxima de crescimento. A determinação do consumo das pentoses foi realizada através da metodologia de Somogy e Nelson, para a determinação de carboidratos foi utilizada uma adaptação do método do ácido 3,5 dinitro salicílico, as proteínas foram quantificadas pelo método de micro-Kjeldahl. Todas as microalgas foram capazes de consumir em no máximo quatro dias as concentrações de pentoses, e logo após esta etapa mixotrófica manter-se em crescimento autotrófico, destacando-se as cepas de Dunaliella salina e Synechococcus nidulans que esgotaram as maiores concentrações utililizadas em dois dias de cultivo. Para as cianobactérias estudadas, Spirulina paracas cultivada com 10% de C5, foi a que obteve os melhores resultados de concentração celular, produtividade e velocidade específica de crescimento máxima, 1,364 g.L-1 , 0,128 g.L-1 .dia-1 e 0,240 dia-1 . Em relação ao efeito na composição da biomassa, Synechococcus nidulans produziu o maior teor de proteínas, 62,9%, nos ensaios com 10% de C5. Já as cepas de Chlorophytas os melhores resultados foram obtidos com o uso de 5% de C5, para os parâmetros cinéticos destacam-se os valores encontrados para Dunaliella salina, onde a maior concentração de biomassa, produtividade e velocidade específica de crescimento foram 1,246 g.L-1 , 0,091 g.L- 1 .dia-1 e 0,379 dia-1 , respectivamente. Chlorella minutissima e Dunaliella salina foram as melhores produtoras de carboidratos, alcançando 58,6%/0,3 g.L-1 e 23,07%/0,29 g.L-1 ,respecivamente. Logo, o uso de pentoses nas microalgas em substituição as fontes tradicionais de carbono, resultou no crescimento das mesmas, o que mostra que estas podem agir como intermediários para a absorção de açúcares de cinco carbonos.
Resumo:
The biorefinery concept has attracted much attention over the last decade due to increasing concerns about the use of fossil resources. In this context emerged the use of bioplastics, namely polyhydroxyalkanoates (PHA). PHA are biocompatible and biodegradable plastics that can be obtained from renewable raw materials and can constitute an alternative solution to conventional plastics. In this work, hydrolysed cellulose pulp, coming from Eucalyptus globulus wood cooking, was used as substrate to the PHA-storing bacteria Haloferax mediterranei. The hydrolysed pulp is rich in simple sugars, mainly glucose (81.96 g.L-1) and xylose (20.90 g.L-1). Tests were made in defined medium with glucose and xylose and in hydrolysate supplemented with salts and yeast extract. Different concentrations of glucose were tested, namely 10, 15, 20, 30 and 40 g.L-1. The best accumulation results (27.1 % of PHA) were obtained in hydrolysate medium with 10 g.L-1. Using this concentration, assays were performed in fed-batch and sequencing batch reactor conditions in order to determine the best feeding strategy. The strategy that led to the best results was fed-batch assay with 24.7 % of PHA. An assay without sterile conditions was performed, in which was obtained the same growth than in sterilization test. Finally it was performed an assay in a bioreactor and a fast growth (0.14 h-1) with high glucose and xylose consumption rates (0.368 g.L-1.h-1 and 0.0947 g.L-1.h-1, respectively) were obtained. However 1.50 g.L-1 of PHA, corresponding to 16.1 % (92.52 % of 3HB and 3HV of 7.48 %) of % PHA were observed. The polymer was further characterized by DSC with a glass transition temperature of -6.07 °C, a melting temperature of 156.3 °C and a melting enthalpy of 63.07 J.g-1, values that are in accordance with the literature. This work recognizes for the first time the suitability of the pulp paper hydrolysate as a substrate for PHA production by H. mediterranei.