939 resultados para visual object detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A distribution of tumor size at detection is derived within the framework of a mechanistic model of carcinogenesis with the object of estimating biologically meaningful parameters of tumor latency. Its limiting form appears to be a generalization of the distribution that arises in the length-biased sampling from stationary point processes. The model renders the associated estimation problems tractable. The usefulness of the proposed approach is illustrated with an application to clinical data on premenopausal breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a 9.4 T MRI instrument, we have obtained images of the mouse brain response to photic stimulation during a period between deep anesthesia and the early stages of arousal. The large image enhancements we observe (often >30%) are consistent with literature results extrapolated to 9.4 T. However, there are also two unusual aspects to our findings. (i) The visual area of the brain responds only to changes in stimulus intensity, suggesting that we directly detect operations of the M visual system pathway. Such a channel has been observed in mice by invasive electrophysiology, and described in detail for primates. (ii) Along with the typical positive response in the area of the occipital portion of the brain containing the visual cortex, another area displays decreased signal intensity upon stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenge of the Human Genome Project is to increase the rate of DNA sequence acquisition by two orders of magnitude to complete sequencing of the human genome by the year 2000. The present work describes a rapid detection method using a two-dimensional optical wave guide that allows measurement of real-time binding or melting of a light-scattering label on a DNA array. A particulate label on the target DNA acts as a light-scattering source when illuminated by the evanescent wave of the wave guide and only the label bound to the surface generates a signal. Imaging/visual examination of the scattered light permits interrogation of the entire array simultaneously. Hybridization specificity is equivalent to that obtained with a conventional system using autoradiography. Wave guide melting curves are consistent with those obtained in the liquid phase and single-base discrimination is facile. Dilution experiments showed an apparent lower limit of detection at 0.4 nM oligonucleotide. This performance is comparable to the best currently known fluorescence-based systems. In addition, wave guide detection allows manipulation of hybridization stringency during detection and thereby reduces DNA chip complexity. It is anticipated that this methodology will provide a powerful tool for diagnostic applications that require rapid cost-effective detection of variations from known sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primate visual motion system performs numerous functions essential for survival in a dynamic visual world. Prominent among these functions is the ability to recover and represent the trajectories of objects in a form that facilitates behavioral responses to those movements. The first step toward this goal, which consists of detecting the displacement of retinal image features, has been studied for many years in both psychophysical and neurobiological experiments. Evidence indicates that achievement of this step is computationally straightforward and occurs at the earliest cortical stage. The second step involves the selective integration of retinal motion signals according to the object of origin. Realization of this step is computationally demanding, as the solution is formally underconstrained. It must rely--by definition--upon utilization of retinal cues that are indicative of the spatial relationships within and between objects in the visual scene. Psychophysical experiments have documented this dependence and suggested mechanisms by which it may be achieved. Neurophysiological experiments have provided evidence for a neural substrate that may underlie this selective motion signal integration. Together they paint a coherent portrait of the means by which retinal image motion gives rise to our perceptual experience of moving objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a preliminary study in which Machine Learning experiments applied to Opinion Mining in blogs have been carried out. We created and annotated a blog corpus in Spanish using EmotiBlog. We evaluated the utility of the features labelled firstly carrying out experiments with combinations of them and secondly using the feature selection techniques, we also deal with several problems, such as the noisy character of the input texts, the small size of the training set, the granularity of the annotation scheme and the language object of our study, Spanish, with less resource than English. We obtained promising results considering that it is a preliminary study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subpixel methods increase the accuracy and efficiency of image detectors, processing units, and algorithms and provide very cost-effective systems for object tracking. Published methods achieve resolution increases up to three orders of magnitude. In this Letter, we demonstrate that this limit can be theoretically improved by several orders of magnitude, permitting micropixel and submicropixel accuracies. The necessary condition for movement detection is that one single pixel changes its status. We show that an appropriate target design increases the probability of a pixel change for arbitrarily small shifts, thus increasing the detection accuracy of a tracking system. The proposal does not impose severe restriction on the target nor on the sensor, thus allowing easy experimental implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Refractive error is defined as the inability of the eye to bring parallel rays of light into focus on the retina, resulting in nearsightedness (myopia), farsightedness (Hyperopia) or astigmatism. Uncorrected refractive error in children is associated with increased morbidity and reduced educational opportunities. Vision screening (VS) is a method for identifying children with visual impairment or eye conditions likely to lead to visual impairment. Objective: To analyze the utility of vision screening conducted by teachers and to contribute to a better estimation of the prevalence of childhood refractive errors in Apurimac, Peru. Design: A pilot vision screening program in preschool (Group I) and elementary school children (Group II) was conducted with the participation of 26 trained teachers. Children whose visual acuity was<6/9 [20/30] (Group I) and≤6/9 (Group II) in one or both eyes, measured with the Snellen Tumbling E chart at 6 m, were referred for a comprehensive eye exam. Specificity and positive predictive value to detect refractive error were calculated against clinical examination. Program assessment with participants was conducted to evaluate outcomes and procedures. Results: A total sample of 364 children aged 3–11 were screened; 45 children were examined at Centro Oftalmológico Monseñor Enrique Pelach (COMEP) Eye Hospital. Prevalence of refractive error was 6.2% (Group I) and 6.9% (Group II); specificity of teacher vision screening was 95.8% and 93.0%, while positive predictive value was 59.1% and 47.8% for each group, respectively. Aspects highlighted to improve the program included extending training, increasing parental involvement, and helping referred children to attend the hospital. Conclusion: Prevalence of refractive error in children is significant in the region. Vision screening performed by trained teachers is a valid intervention for early detection of refractive error, including screening of preschool children. Program sustainability and improvements in education and quality of life resulting from childhood vision screening require further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional visual servoing systems do not deal with the topic of moving objects tracking. When these systems are employed to track a moving object, depending on the object velocity, visual features can go out of the image, causing the fail of the tracking task. This occurs specially when the object and the robot are both stopped and then the object starts the movement. In this work, we have employed a retina camera based on Address Event Representation (AER) in order to use events as input in the visual servoing system. The events launched by the camera indicate a pixel movement. Event visual information is processed only at the moment it occurs, reducing the response time of visual servoing systems when they are used to track moving objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To evaluate the usefulness of microperimetry in the early detection of the ocular anomalies associated with the use of hydroxychloroquine. Methods. Prospective comparative case series study comprising 14 healthy eyes of 7 patients (group A) and 14 eyes of 7 patients under treatment with hydroxychloroquine for the treatment of rheumatologic diseases and without fundoscopic or perimetric anomalies (group B). A comprehensive ophthalmological examination including microperimetry (MP) and spectraldomain optical coherence tomography was performed in both groups. Results. No significant differences were found in mean MP foveal sensitivity between groups (P = 0.18). However, mean MP overall sensitivity was significantly higher in group A (29.05 ± 0.57 dB versus group B, 26.05 ± 2.75 dB; P < 0.001). Significantly higher sensitivity values were obtained in group A in comparison to group B for the three eccentric loci evaluated (P < 0.001). Conclusion. Microperimetry seems to be a useful tool for the early detection of retinal damage in patients treated with hydroxychloroquine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our purpose is to report alterations in contrast sensitivity function (CSF) and in the magno, parvo and koniocellular visual pathways by means of a multichannel perimeter in case of an essential tremor (ET). A complete evaluation of the visual function was performed in a 69-year old patient, including the analysis of the chromatic discrimination by the Fansworth–Munsell 100 hue test, the measurement of the CSF by the CSV-1000E test, and the detection of potential alteration patterns in the magno, parvo and koniocellular visual pathways by means of a multichannel perimeter. Visual acuity and intraocular pressure (IOP) were within the ranges of normality in both eyes. No abnormalities were detected in the fundoscopic examination and in the optical coherence tomography (OCT) exam. The results of the color vision examination were also within the ranges of normality. A significant decrease in the achromatic CSFs for right eye (RE) and left eye (LE) was detected for all spatial frequencies. The statistical global values provided by the multichannel perimeter confirms that there were significant absolute sensitivity losses compared to the normal pattern in RE. In the LE, only a statistically significant decrease in sensitivity was detected for the blue-yellow (BY) channel. The pattern standard deviation (PSD) values obtained in our patient indicated that there were significant localized losses compared to the normality pattern in the achromatic channel of the RE and in the red-green (RG) channel of the LE. Some color vision alterations may be present in ET that cannot be detected with conventional color vision tests, such as the FM 100 Hue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subpixel techniques are commonly used to increase the spatial resolution in tracking tasks. Object tracking with targets of known shape permits obtaining information about object position and orientation in the three-dimensional space. A proper selection of the target shape allows us to determine its position inside a plane and its angular and azimuthal orientation under certain limits. Our proposal is demonstrated both numerical and experimentally and provides an increase the accuracy of more than one order of magnitude compared to the nominal resolution of the sensor. The experiment has been performed with a high-speed camera, which simultaneously provides high spatial and temporal resolution, so it may be interesting for some applications where this kind of targets can be attached, such as vibration monitoring and structural analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this project, we propose the implementation of a 3D object recognition system which will be optimized to operate under demanding time constraints. The system must be robust so that objects can be recognized properly in poor light conditions and cluttered scenes with significant levels of occlusion. An important requirement must be met: the system must exhibit a reasonable performance running on a low power consumption mobile GPU computing platform (NVIDIA Jetson TK1) so that it can be integrated in mobile robotics systems, ambient intelligence or ambient assisted living applications. The acquisition system is based on the use of color and depth (RGB-D) data streams provided by low-cost 3D sensors like Microsoft Kinect or PrimeSense Carmine. The range of algorithms and applications to be implemented and integrated will be quite broad, ranging from the acquisition, outlier removal or filtering of the input data and the segmentation or characterization of regions of interest in the scene to the very object recognition and pose estimation. Furthermore, in order to validate the proposed system, we will create a 3D object dataset. It will be composed by a set of 3D models, reconstructed from common household objects, as well as a handful of test scenes in which those objects appear. The scenes will be characterized by different levels of occlusion, diverse distances from the elements to the sensor and variations on the pose of the target objects. The creation of this dataset implies the additional development of 3D data acquisition and 3D object reconstruction applications. The resulting system has many possible applications, ranging from mobile robot navigation and semantic scene labeling to human-computer interaction (HCI) systems based on visual information.