964 resultados para variance component models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis argues for the inclusion of the study of religion within the public school curriculum. It argues that the whole division between “religious” and “secular” spaces and institutions is itself rooted in a specific religious tradition. Using the theories of Jacques Derrida, I argue that, unless the present process of globalization is tempered with alternative models of organizing that don’t include this secular/sacred division, the very process of Western globalization acts as a moral religion. Derrida calls this process “globalatinization,” the imposition of Western defined institutions upon other cultures. The process creates a type of religious violence through act of imposing notions of “secular/public” and “sacred/private.” Drawing from Mark Juergensmeyer’s theory of religious violence, and Derrida’s and Foucault’s understanding of discursive formations, I argue that religious studies should enter this “secular/public” space in the form of educating about the world’s religions. Such education would go a long way in preventing the demonization of the “other” through promoting empathy, understanding, and respect for “other” traditions. Finally, education would provide a needed self-critique of the dividing of “secular/sacred” in contemporary Western life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software engineering researchers are challenged to provide increasingly more powerful levels of abstractions to address the rising complexity inherent in software solutions. One new development paradigm that places models as abstraction at the forefront of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code.^ Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process.^ The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources.^ At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM's synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise.^ This dissertation investigates how to decouple the DSK from the MoE and subsequently producing a generic model of execution (GMoE) from the remaining application logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis component of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions.^ This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Software engineering researchers are challenged to provide increasingly more pow- erful levels of abstractions to address the rising complexity inherent in software solu- tions. One new development paradigm that places models as abstraction at the fore- front of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code. Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process. The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources. At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM’s synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise. This dissertation investigates how to decouple the DSK from the MoE and sub- sequently producing a generic model of execution (GMoE) from the remaining appli- cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis com- ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions. This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Implementing effective antenatal care models is a key global policy goal. However, the mechanisms of action of these multi-faceted models that would allow widespread implementation are seldom examined and poorly understood. In existing care model analyses there is little distinction between what is done, how it is done, and who does it. A new evidence-informed quality maternal and newborn care (QMNC) framework identifies key characteristics of quality care. This offers the opportunity to identify systematically the characteristics of care delivery that may be generalizable across contexts, thereby enhancing implementation. Our objective was to map the characteristics of antenatal care models tested in Randomised Controlled Trials (RCTs) to a new evidence-based framework for quality maternal and newborn care; thus facilitating the identification of characteristics of effective care.

Methods: A systematic review of RCTs of midwifery-led antenatal care models. Mapping and evaluation of these models’ characteristics to the QMNC framework using data extraction and scoring forms derived from the five framework components. Paired team members independently extracted data and conducted quality assessment using the QMNC framework and standard RCT criteria.

Results: From 13,050 citations initially retrieved we identified 17 RCTs of midwifery-led antenatal care models from Australia (7), the UK (4), China (2), and Sweden, Ireland, Mexico and Canada (1 each). QMNC framework scores ranged from 9 to 25 (possible range 0–32), with most models reporting fewer than half the characteristics associated with quality maternity care. Description of care model characteristics was lacking in many studies, but was better reported for the intervention arms. Organisation of care was the best-described component. Underlying values and philosophy of care were poorly reported.

Conclusions: The QMNC framework facilitates assessment of the characteristics of antenatal care models. It is vital to understand all the characteristics of multi-faceted interventions such as care models; not only what is done but why it is done, by whom, and how this differed from the standard care package. By applying the QMNC framework we have established a foundation for future reports of intervention studies so that the characteristics of individual models can be evaluated, and the impact of any differences appraised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground-source heat pump (GSHP) systems represent one of the most promising techniques for heating and cooling in buildings. These systems use the ground as a heat source/sink, allowing a better efficiency thanks to the low variations of the ground temperature along the seasons. The ground-source heat exchanger (GSHE) then becomes a key component for optimizing the overall performance of the system. Moreover, the short-term response related to the dynamic behaviour of the GSHE is a crucial aspect, especially from a regulation criteria perspective in on/off controlled GSHP systems. In this context, a novel numerical GSHE model has been developed at the Instituto de Ingeniería Energética, Universitat Politècnica de València. Based on the decoupling of the short-term and the long-term response of the GSHE, the novel model allows the use of faster and more precise models on both sides. In particular, the short-term model considered is the B2G model, developed and validated in previous research works conducted at the Instituto de Ingeniería Energética. For the long-term, the g-function model was selected, since it is a previously validated and widely used model, and presents some interesting features that are useful for its combination with the B2G model. The aim of the present paper is to describe the procedure of combining these two models in order to obtain a unique complete GSHE model for both short- and long-term simulation. The resulting model is then validated against experimental data from a real GSHP installation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Leadership is particularly important in complex highly interprofessional health care contexts involving a number of staff, some from the same specialty (intraprofessional), and others from different specialties (interprofessional). The authors recently published the concept of “The Burns Suite” (TBS) as a novel simulation tool to deliver interprofessional and teamwork training. It is unclear which leadership behaviors are the most important in an interprofessional burns resuscitation scenario, and whether they can be modeled on to current leadership theory. The purpose of this study was to perform a comprehensive video analysis of leadership behaviors within TBS. Methods A total of 3 burns resuscitation simulations within TBS were recorded. The video analysis was grounded-theory inspired. Using predefined criteria, actions/interactions deemed as leadership behaviors were identified. Using an inductive iterative process, 8 main leadership behaviors were identified. Cohen’s κ coefficient was used to measure inter-rater agreement and calculated as κ = 0.7 (substantial agreement). Each video was watched 4 times, focusing on 1 of the 4 team members per viewing (senior surgeon, senior nurse, trainee surgeon, and trainee nurse). The frequency and types of leadership behavior of each of the 4 team members were recorded. Statistical significance to assess any differences was assessed using analysis of variance, whereby a p < 0.05 was taken to be significant. Leadership behaviors were triangulated with verbal cues and actions from the videos. Results All 3 scenarios were successfully completed. The mean scenario length was 22 minutes. A total of 362 leadership behaviors were recorded from the 12 participants. The most evident leadership behaviors of all team members were adhering to guidelines (which effectively equates to following Advanced Trauma and Life Support/Emergency Management of Severe Burns resuscitation guidelines and hence “maintaining standards”), followed by making decisions. Although in terms of total frequency the senior surgeon engaged in more leadership behaviors compared with the entire team, statistically there was no significant difference between all 4 members within the 8 leadership categories. This analysis highlights that “distributed leadership” was predominant, whereby leadership was “distributed” or “shared” among team members. The leadership behaviors within TBS also seemed to fall in line with the “direction, alignment, and commitment” ontology. Conclusions Effective leadership is essential for successful functioning of work teams and accomplishment of task goals. As the resuscitation of a patient with major burns is a dynamic event, team leaders require flexibility in their leadership behaviors to effectively adapt to changing situations. Understanding leadership behaviors of different team members within an authentic simulation can identify important behaviors required to optimize nontechnical skills in a major resuscitation. Furthermore, attempting to map these behaviors on to leadership models can help further our understanding of leadership theory. Collectively this can aid the development of refined simulation scenarios for team members, and can be extrapolated into other areas of simulation-based team training and interprofessional education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Too often, validation of computer models is considered as a "once and forget" task. In this paper a systematic and graduated approach to evacuation model validation is suggested. This involves, (i) component testing, (ii) functional validation, (iii) qualitative validation and (iv) quantitative validation. Viewed in this manner, validation is considered an on-going activity and an integral part of the life cycle of the software. While the first three components of the validation protocol pose little or no significant problems, the task of quantitative validation poses a number of challenges, the most significant being a shortage of suitable experimental data. Finally, the validation protocol used in the development of the EXODUS suite of evacuation models is examined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the core tasks of the virtual-manufacturing environment is to characterise the transformation of the state of material during each of the unit processes. This transformation in shape, material properties, etc. can only be reliably achieved through the use of models in a simulation context. Unfortunately, many manufacturing processes involve the material being treated in both the liquid and solid state, the trans-formation of which may be achieved by heat transfer and/or electro-magnetic fields. The computational modelling of such processes, involving the interactions amongst various interacting phenomena, is a consider-able challenge. However, it must be addressed effectively if Virtual Manufacturing Environments are to become a reality! This contribution focuses upon one attempt to develop such a multi-physics computational toolkit. The approach uses a single discretisation procedure and provides for direct interaction amongst the component phenomena. The need to exploit parallel high performance hardware is addressed so that simulation elapsed times can be brought within the realms of practicality. Examples of Multiphysics modelling in relation to shape casting, and solder joint formation reinforce the motivation for this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how aquatic species grow is fundamental in fisheries because stock assessment often relies on growth dependent statistical models. Length-frequency-based methods become important when more applicable data for growth model estimation are either not available or very expensive. In this article, we develop a new framework for growth estimation from length-frequency data using a generalized von Bertalanffy growth model (VBGM) framework that allows for time-dependent covariates to be incorporated. A finite mixture of normal distributions is used to model the length-frequency cohorts of each month with the means constrained to follow a VBGM. The variances of the finite mixture components are constrained to be a function of mean length, reducing the number of parameters and allowing for an estimate of the variance at any length. To optimize the likelihood, we use a minorization–maximization (MM) algorithm with a Nelder–Mead sub-step. This work was motivated by the decline in catches of the blue swimmer crab (BSC) (Portunus armatus) off the east coast of Queensland, Australia. We test the method with a simulation study and then apply it to the BSC fishery data.