913 resultados para uterine cervix carcinoma in situ
Resumo:
Effects of the potential of anodic oxidation and of potential cycling on the surface structure of a highly oriented pyrolytic graphite (HOPG) electrode were observed by in situ electrochemical scanning tunnelling microscopy (ECSTM) in dilute H2SO4 solution with atomic resolution. With potential cycling between -0.1 V and 1.8 V vs. Ag/AgCl (sat. KCI), some atoms on the top layer of HOPG protrude out of the base plane, and the graphite lattice of these protrusions is still intact but is strained and expanded. With further potential cycling, some protrusions coalesced and some grew larger, and an anomalous superperiodic feature was observed (spacing 90 Angstrom with a rotation 30 degrees relative to atomic corrugations) which superimposed on the atomic corrugation of HOPG. On the topmost of these protrusions, some atoms form oxides and others are still resolved by the ECSTM image. With potential cycling between -0.1 V and + 2.0 V vs. Ag/AgCl (sat. KCl), damage to freshly cleaved HOPG surface is more serious and fast, some ridges are observed, the atomic structure of the HOPG surface is partially and then completely damaged due to the formation of oxide. We also found that anodic oxidation occurred nonuniformly on the surface of HOPG near defects during potential cycling.
Resumo:
A simple, convenient and versatile thin layer reflection Fourier transform IR microspectroelectrochemical (FTIRMSEC) cell has been described and characterized. Electrochemistry and in situ FTIR microspectroscopy were studied by using the hexacyanoferrate redox couple in aqueous sulphate solution, indicating that this type of cell is characteristic of both micro- or ultramicroelectrode and thin layer spectroelectrochemistry. Furthermore, the application of this FTIRMSEC cell to IR for characterization of the products of electrochemical reactions was carried out for the oxidation of (mesotetraphenylporphinato)manganese(III) perchlorate in dichloromethane + tetrabutylammonium perchlorate solution. Finally, the advantages and problems of this type of cell compared with a conventional optically transparent thin layer FTIR spectroelectrochemical cell were discussed.
Resumo:
The variation in molecule adsorption mode on pretreated highly oriented pyrolytic graphite electrodes, modified with the title complex K10H3[Dy(SiMo11O39)(2)] by cyclic voltammetry in the title complex solution, was observed in situ by electrochemical scanning tunnelling microscopy (ECSTM) with molecular resolution in sodium sulphate solution. According to the ECSTM images and the known molecular structure we conclude that the adsorption mode of the title complex modified electrode changed during potential cycling from ''vertical'' to ''inclined'' and then ''horizontal'' or ''flat'' mode, i.e. the title complex adsorbed on the surface of electrode by one ligand of the complex at first, then began to incline and was finally adsorbed by two ligands of the complex. This result indicates that the adsorption mode on the modified electrode surface changed during potential cycling in the sulphate solution and a much more stable molecular layer was formed. The change in adlattice of adsorbates on the modified electrode surface from hexagonal to rectangular was also observed by ECSTM. A plausible model was given to explain this process.
Resumo:
Phase behavior, thermal, theological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers form optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions.
Resumo:
A novel in-situ spectroelectrochemical technique, the combination of probe beam deflection (PBD) with cyclic voltammetry (CV), was used to study the ion exchange process of prussian blue(PB) modified film electrode in contact with various electrolyte solutions. The ion exchange mechanism was verified as following: (K2Fe2+FeII)(CN)(6) -e(-)-k(+)reversible arrow +e(-)+k(+) (KFe3+FeII)(CN)(6) -ke(-)-xk(+)reversible arrow +xe(-)+kk(+) [(Fe3+FeIII)(CN)(6)](x)[(KFe3+FeII)(CN)(6)](1-x) where on reduction PB film in contact with an acidic KCl electrolyte, it was confirmed that protons enter into the PB film before K+ cations.
Resumo:
The electrochemical redox behavior of bilirubin (BR IValpha), biliverdin (BV IValpha) and their oxidized product bile-purpurin (Bi-Pu) have been studied by in situ spectroelectrochemical techniques, which reveals that the transformation of BR IValpha [GRA
Resumo:
The electro-oxidation of bilirubin (BR) in aqueous solution was investigated by cyclic voltammetry and in-situ thin-layer spectroelectrochemical techniques, It was found that both oxidation processes of BR are two electron transfer reactions. A mechanism
Resumo:
The early stages of the electrodeposition of nickel on highly oriented pyrolytic graphite (HOPG) were investigated by in situ scanning tunnelling microscopy, scanning electron microscopy and electrochemical measurements. Experimental results showed that t
Resumo:
An investigation of electrode oxidation processes of (tetra-phenylporphinato) manganese (III) Perchlorate, (TPS)Mn(III)ClO4, was carried out during the titration of chloride anions by conventional cyclic voltammetry, thin-layer cyclic voltammetry and spectroelectrochemistry. It was demonstrated that in the presence of one equivalent amount of Cl-, the first one electron oxidation reaction corresponds to the Mn(III)I cation radical oxidation, and the second one electron oxidation corresponds to the cation radical/dication generation followed by an iso-porphyrin formation reaction, however in the presence of two equivalent amount of Cl-, the first one electron oxidation of Mn(III) gives Mn(IV) porphyrin and the second one electron oxidation generates cation radicals of Mn(IV) followed by an iso-porphyrin formation reactions. Mechanisms of these redox processes are postulated.
Resumo:
The electrooxidation reaction of biliverdin (BY) is studied by in situ spectroelectrochemistry with rapid spectra scanning in an optically transparent thin-layer cell. The study reveals that the oxidation process of BY is very complicated and involves many stages. The average formal potential of BY is obtained for the first time as E-degrees' = 0.634 V (vs- Ag/AgCl), and the electrooxidation mechanism of BY is proposed.
Resumo:
The electrochemical redox processes of tryptophan were studied by in situ circular dichroic (CD) spectroelectrochemistry with a long optical path length thin-layer cell. The oxidation of tryptophan at low concentrations in basic aqueous solution is a two-electron irreversible electrochemical process which results from an irreversible subsequent chemical reaction. A method of treatment of CD spectral data for the irreversible electrochemical reaction is suggested, from which the values E(p/2) = 0.46 V, alphan(alpha) = 0.313 and k0 = 2.4 x 10(-4) cm s-1 (the standard heterogeneous reaction rate constant for tryptophan oxidation) were obtained.
Resumo:
A highly repetitive satellite sequence was previously identified in the Pacific oyster Crassostrea gigas Thunberg. The sequence has 168 bp per unit, present in tandem repeats, and accounts for 1% to 4% of the genome. We studied the chromosomal location of this satellite sequence by fluorescence in situ hybridization (FISH), A probe was made by polymerase chain reaction and incorporation of digoxigenin-11-dUTP. Hybridization was detected with fluorescein-labeled antidigoxigenin antibodies. FISH signals were located at centromeric regions of 7 pairs of the Pacific oyster chromosomes. No interstitial site was found. Signals were strong and consistent on chromosomes 1, 2, 4, and 7, but weak or variable oil chromosomes 5, 8, and 10. No signal was observed on chromosomes 3, 6, and 9. Our results showed that this sequence is clearly a centromeric satellite, disputing its previous assignment to the telomeric and submetacentric regions of 2 chromosomes. No signal was detected in the American oyster (Crassostrea virginica Gmelin).
Resumo:
In amphioxus embryos, the nascent and early mesoderm (including chorda-mesoderm) was visualized by expression of a Brachyury gene (AmBra-2). A band of mesoderm is first detected encircling the earliest (vegetal plate stage) gastrula sub-equatorially. Soon thereafter, the vegetal plate invaginates. resulting in a cap-shaped gastrula with the mesoderm localized at the blastoporal lip and completely encircling the blastopore. As the gastrula stage progresses, DiI (a vital dye) labeling demonstrates that the entire mesoderm is internalized by a slight involution of the epiblast into the hypoblast all around the perimeter of the blastopore. Subsequently. during the early neurula stage, the internalized mesoderm undergoes anterior extension mid-dorsally (as notochord) and dorsolaterally (in paraxial regions when segments will later form). By the late neurula stage, AmBra-2 is no longer transcribed throughout the mesoderm as a whole; instead. expression is detectable only in the posterior mesoderm and in the notochord, but not in par axial mesoderm where definitive somites have formed.
Resumo:
Heterosigma akashiwo (Hada) is a fragile, fish-killing alga. Efforts to understand and prevent blooms due to this harmful species to mitigate the impact on aquaculture require the development of methods for rapid and precise identification and quantification, so that adequate warning of a harmful algal bloom may be given. Here, we report the development and application of rRNA and rDNA-targeted oligonucleotide probes for fluorescence in situ hybridization (FISH) to aid in the detection and enumeration of H. akashiwo. The designed probes were species specific, showing no cross-reactivity with four common HAB causative species: Prorocentrum micans Ehrenberg, P. minimum (Pavillard) Schiller, Alexandrium tarmarense (Lebour) Balech, and Skeletonema costatum (Greville) Cleve, or with four other microalgae, including Gymnodinium sp. Stein, Platy-monas cordiformis (Karter) Korsch, Skeletonema sp.1 Greville and Skeletonema sp.2. The rRNA-targeted probe hybridized to cytoplasmic rRNA, showing strong green fluorescence throughout the whole cell, while cells labeled by rDNA-targeted probe exhibited exclusively fluorescent nucleus. The detection protocols were optimized and could be completed within an hour. For rRNA and rDNA probes, about a corresponding 80% and 70% of targeted cells could be identified and quantified during the whole growth circle, despite the inapparent variability in the average probe reactivity. The established FISH was proved promising for specific, rapid, precise, and quantitative detection of H. akashiwo. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
To develop genetic and physical maps for shrimp, accurate information on the actual number of chromosomes and a large number of genetic markers is needed. Previous reports have shown two different chromosome numbers for the Pacific whiteleg shrimp, Penaeus vannamei, the most important penaeid shrimp species cultured in the Western hemisphere. Preliminary results obtained by direct sequencing of clones from a Sau3A-digested genomic library of P. vannamei ovary identified a large number of (TAACC/GGTTA)-containing SSRs. The objectives of this study were to (1) examine the frequency of (TAACC)(n) repeats in 662 P. vannamei genomic clones that were directly sequenced, and perform homology searches of these clones, (2) confirm the number of chromosomes in testis of P. vannamei, and (3) localize the TAACC repeats in P. vannamei chromosome spreads using fluorescence in situ hybridization (FISH). Results for objective I showed that 395 out of the 662 clones sequenced contained single or multiple SSRs with three or more repeat motifs, 199 of which contained variable tandem repeats of the pentanucleotide (TAACC/GGTTA),, with 3 to 14 copies per sequence. The frequency of (TAACC)n repeats in P. vannamei is 4.68 kb for SSRs with five or more repeat motifs. Sequence comparisons using the BLASTN nonredundant and expressed sequence tag (EST) databases indicated that most of the TAACC-containing clones were similar to either the core pentanucleotide repeat in PVPENTREP locus (GenBank accession no. X82619) or portions of 28S rRNA. Transposable elements (transposase for Tn1000 and reverse transcriptase family members), hypothetical or unnamed protein products, and genes of known function such as 18S and 28S rRNAs, heat shock protein 70, and thrombospondin were identified in non-TAACC-containing clones. For objective 2, the meiotic chromosome number of P. vannamei was confirmed as N = 44. For objective 3, four FISH probes (P1 to P4) containing different numbers of TAACC repeats produced positive signals on telomeres of P. vannamei chromosomes. A few chromosomes had positive signals interstitially. Probe signal strength and chromosome coverage differed in the general order of P1 > P2 > P3 > P4, which correlated with the length of TAACC repeats within the probes: 83, 66, 35, and 30 bp, respectively, suggesting that the TAACC repeats, and not the flanking sequences, produced the TAACC signals at chromosome ends and TAACC is likely the telomere sequence for P. vannamei.