968 resultados para urban water bodies
Resumo:
The term ‘water pollution’ broadly refers to the contamination of water and water bodies (e.g. lakes, rivers, oceans, groundwater etc). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove the harmful contaminants. This affects not only the plants and organisms living in these bodies of water but also the entire natural biological communities and the biodiversity.Advanced Oxidation Processes (AOPs) have been tested as environment-friendly techniques for the treatment of contaminated water, in view of their ability to convert pollutants into harmless end products. These techniques refer to a set of treatment procedures designed to remove organic or inorganic contaminants in wastewater by oxidation. The contaminants are oxidized by different reagents such as air, oxygen, ozone, and hydrogen peroxide which are introduced in precise, preprogrammed dosages, sequences and combinations under appropriate conditions. The procedure when combined with light in presence of catalyst is known as photocatalysis. When ultrasound (US) is used as the energy source, the process is referred as sonication. Sonication in presence of catalyst is referred as sonocatalysis. Of late, combination of light and sound as energy sources has been tested for the decontamination of wastewater in the presence of suitable catalyst. In this case, the process is referred as sonophotocatalysis. These AOPs are specially advantageous in pollution control and waste water treatment because unlike many other technologies, they do not just transfer the pollutant from one phase to another but completely degrade them into innocuous substances such as CO2 and H2O.
Resumo:
Since 1970 when Sultan Qaboos bin Said Al Said took over power from this father, agriculture in Oman has undergone major transformations as a consequence of rapid population and economic growth. In this process groundwater extraction has dramatically increased to meet domestic and agricultural needs. Recently, the agro-ecosystem of ancient mountain oases of Oman have received greater attention as interest has grown to understand the causes of their often millennia old sustainable productivity. Particularly little is known about the carbon (C) and nutrient turnover in these intensive landuse systems. This is partly due to the difficulties to measure such processes in the often remote fields. To fill the existing gap of knowledge, field studies were conducted in five oases at different altitudes of Al Jabal Al Akhdar, the highest agricultural area in Oman, to determine C and nutrient fluxes as well as nutrient use efficiencies for two different cropping systems as affected by temperature, irrigation, and manure quality. The results of this study indicated that water scarcity as a result of low precipitation and an increase in urban water consumption is a major threat to the sustainability of agriculture in these oases. Optimizing the use of irrigation water is a major challenge for agriculture in these oases, particularly given ever increasing competition for this most limiting resource. Traditionally, farmers of these oases adapt to variation of irrigation water supply by minimizing the growing area of annual crops, leaving these areas uncultivated through drought seasons (Luedeling and Buerkert 2008). In this study, a remarkable reduction in annual crop area was observed in 2009 for all oases. Our results suggested that water scarcity as a result of low precipitation and the increase in urban water consumption cause such changes in land use. The data also underline the intensive C and nutrient turnover in the man-made irrigated agroecosystems and confirmed the importance of the large manure quantities applied continuously to the terraces as a key factor responsible for sustainable soil productivity. To trace the fate of C and plant nutrients that are released from the large amount of manure applied by oasis farmers, more detailed studies under controlled conditions, using isotope signatures, would be needed.
Resumo:
At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.
Resumo:
Los planes de mejoramiento son el instrumento para encauzar la gestión de la calidad del agua. Esta propuesta aborda enfoques estratégicos y frentes de acción para el suministro de agua potable. Se incluye una guía metodológica y un esquema de evaluación integral, para formular planes viables y verificables.
Resumo:
Els sistemes aquàtics continental representen un dels ecosistemes més amenaçats a nivell mundial, com a conseqüència de l'ús intensiu quel'home en fa. La conca del Guadiana no està lliure d'aquestes pressions antròpiques. Les grans infraestructures hidràuliques i l'escorrentia provinent de l'agricultura són només exemples dels greus problemes que pateix la conca. Aquests problemes es fan especialment palesos en la zona alta de la conca, on l'escassetat d'aigua no fa més que agreujar el problema.Tot això ha generat la necessitat urgent d'avaluar l'estat de conservació d'aquests ecosistemes aquàtics continentals, poder determinar la mesura i la magnitud de les pertorbacions que els estan afectant i així proposar mesures de gestió destinades a restaurar-ne la integritat ecològica. El principal objectiu que presenta aquest és determinar els patrons de distribució de les comunitats de algals (amb una menció especial en el grup de les diatomees) i de les seves causes en la conca del Guadiana i associades, amb la finalitat d'establir i proposar eines que permetin avaluar l'estat de conservació de les masses d'aigua d'aquestes conques.
Resumo:
Zooplankton community structure (composition, diversity, dynamics and trophic relationships) of Mediterranian marshes, has been analysed by means of a size based approach. In temporary basins the shape of the biomass-size spectra is related to the hydrological cycle. Linear shape spectra are more frequent in flooding situations when nutrient input causes population growth of small-sized organisms, more than compensating for the effect of competitive interactions. During confinement conditions the scarcity of food would decrease zooplankton growth and increase intra- and interspecific interactions between zooplankton organisms which favour the greatest sizes thus leading to the appearance of curved shape spectra. Temporary and permanent basins have similar taxonomic composition but the latter have higher species diversity, a more simplified temporal pattern and a size distribution dominated mainly by smaller sizes. In permanents basins zooplankton growth is not only conditioned by the availability of resources but by the variable predation of planktivorous fish, so that the temporal variability of the spectra may also be a result of temporal differences in fish predation. Size diversity seems to be a better indicator of the degree of this community structure than species diversity. The tendency of size diversity to increase during succession makes it useful to discriminate between different succession stages, fact that is not achieved by analysing only species diversity since it is low both under large and frequent or small and rare disturbances. Amino acid composition differences found among stages of copepod species indicate a gradual change in diet during the life cycle of these copepods, which provide evidence of food niche partitioning during ontogeny, whereas Daphnia species show a relatively constant amino acid composition. There is a relationship between the degree of trophic niche overlap among stages of the different species and nutrient concentration. Copepods, which have low trophic niche overlap among stages are dominant in food-limited environments, probably because trophic niche partitioning during development allow them to reduce intraspecific competition between adults, juveniles and nauplii. Daphnia species are only dominant in water bodies or periods with high productivity, probably due to the high trophic niche overlap between juveniles and adults. These findings suggest that, in addition to the effect of interspecific competition, predation and abiotic factors, the intraspecific competition might play also an important role in structuring zooplankton assemblages.
Resumo:
The introduction of the EU Water Framework Directive requires policy to address non-point source pollution as part of an overall integrated strategy to improve the ecological status of water bodies. In this paper, we combine an economic optimisation framework with a dynamic simulation model of N transport in the Kennet Catchment to link decisions taken at the farm level to reductions in nitrate concentrations in the River Kennet. We examine a variety of policies targeted at reducing fertiliser use and changing the way in which farm land is used. We find that a tax on nitrogen emerges as the best policy both in terms of cost- and environmental effectiveness. Such a policy involves a considerable reduction in fertiliser use, as well as, a restructuring of land-use away from arable towards increased use of set-aside. Budgetary implications of such a radical move towards set-aside would be huge and hence unlikely to be politically palatable given the objective of reducing the EU budgetary allocation to agriculture. Additionally, the current rise in world demand for food may also mitigate calls for increasing the proportion of land taken out of agricultural production. Although the study succeeds in establishing a link between actions on the farm and nitrate concentrations in the stream water, further work is required to explore the effect of the retention of nitrates in the unsaturated zone and groundwater on this link.
Resumo:
Fine-grained sediments on land, or in a freshwater or marine environment, may become contaminated with a wide range of pollutants including hydrocarbons. This paper is concerned with preliminary studies of the mobilization and transportation of hydrocarbons, during the process of consolidation, to adjacent sediments or water bodies. A modified Rowe Cell was used to measure the consolidation properties of prepared kaolinite and bentonite clay-water slurries, with and without the addition of oil, along with hydrocarbon-bearing drill-cuttings samples taken from the sea-bed adjacent to two North Sea oil-well platforms. The consolidation properties of the kaolinite and bentonite clay slurries were little altered by the addition of oil, which was present at concentrations of between 8073 and 59 572 mg kg(-1). During each consolidation stage, samples of the expelled pore-fluids were collected and analysed for oil content. These values were very low in comparison with the original oil concentration in the samples and changed little between each consolidation stage. Analysis of the slurry samples both before and after consolidation confirms that, proportionally, little oil is removed as a result of consolidation. The implication of these results is that, for the range of samples tested, the very high hydraulic gradients and particle rearrangements that occur during the process of consolidation are capable of releasing only proportionally small amounts of oil bound to the fine-grained clay and silt particles.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.
Resumo:
This paper analyses historic records of agricultural land use and management for England and Wales from 1931 and 1991 and uses export coefficient modelling to hindcast the impact of these practices on the rates of diffuse nitrogen (N) and phosphorus (P) export to water bodies for each of the major geo-climatic regions of England and Wales. Key trends indicate the importance of animal agriculture as a contributor to the total diffuse agricultural nutrient loading on waters, and the need to bring these sources under control if conditions suitable for sustaining 'Good Ecological Status' under the Water Framework Directive are to be generated. The analysis highlights the importance of measuring changes in nutrient loading in relation to the catchment-specific baseline state for different water bodies. The approach is also used to forecast the likely impact of broad regional scale scenarios on nutrient export to waters and highlights the need to take sensitive land out of production, introduce ceilings on fertilizer use and stocking densities, and controls on agricultural practice in higher risk areas where intensive agriculture is combined with a low intrinsic nutrient retention capacity, although the uncertainties associated with the modelling applied at this scale should be taken into account in the interpretation of model output. The paper advocates the need for a two-tiered approach to nutrient management, combining broad regional policies with targeted management in high risk areas at the catchment and farm scale.
Resumo:
Four new beetle species are described from the Lower Cretaceous Purbeck Limestone Group of southern England: Mesogyrus anglicus sp. nov. (Gyrinidae), Coptoclavella purbeckensis sp. nov. (Coptoclavidae), Palaeodytes incompleta sp. nov. (Dytiscidae) and Cretorabus suleatus sp. nov. (Carabidae). The first three taxa were aquatic; the last is terrestrial but may have frequented the margins of water bodies. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fine-grained sediments on land, or in a freshwater or marine environment, may become contaminated with a wide range of pollutants including hydrocarbons. This paper is concerned with preliminary studies of the mobilization and transportation of hydrocarbons, during the process of consolidation, to adjacent sediments or water bodies. A modified Rowe Cell was used to measure the consolidation properties of prepared kaolinite and bentonite clay-water slurries, with and without the addition of oil, along with hydrocarbon-bearing drill-cuttings samples taken from the sea-bed adjacent to two North Sea oil-well platforms. The consolidation properties of the kaolinite and bentonite clay slurries were little altered by the addition of oil, which was present at concentrations of between 8073 and 59 572 mg kg(-1). During each consolidation stage, samples of the expelled pore-fluids were collected and analysed for oil content. These values were very low in comparison with the original oil concentration in the samples and changed little between each consolidation stage. Analysis of the slurry samples both before and after consolidation confirms that, proportionally, little oil is removed as a result of consolidation. The implication of these results is that, for the range of samples tested, the very high hydraulic gradients and particle rearrangements that occur during the process of consolidation are capable of releasing only proportionally small amounts of oil bound to the fine-grained clay and silt particles.
Resumo:
Anthropogenic changes in precipitation pose a serious threat to society—particularly in regions such as the Middle East that already face serious water shortages. However, climate model projections of regional precipitation remain highly uncertain. Moreover, standard resolution climate models have particular difficulty representing precipitation in the Middle East, which is modulated by complex topography, inland water bodies and proximity to the Mediterranean Sea. Here we compare precipitation changes over the twenty-first century against both millennial variability during the Holocene and interannual variability in the present day. In order to assess the climate model and to make consistent comparisons, this study uses new regional climate model simulations of the past, present and future in conjunction with proxy and historical observations. We show that the pattern of precipitation change within Europe and the Middle East projected by the end of the twenty-first century has some similarities to that which occurred during the Holocene. In both cases, a poleward shift of the North Atlantic storm track and a weakening of the Mediterranean storm track appear to cause decreased winter rainfall in southern Europe and the Middle East and increased rainfall further north. In contrast, on an interannual time scale, anomalously dry seasons in the Middle East are associated with a strengthening and focusing of the storm track in the north Mediterranean and hence wet conditions throughout southern Europe.
Resumo:
The concept of an organism's niche is central to ecological theory, but an operational definition is needed that allows both its experimental delineation and interpretation of field distributions of the species. Here we use population growth rate (hereafter, pgr) to de. ne the niche as the set of points in niche space where pgr. 0. If there are just two axes to the niche space, their relationship to pgr can be pictured as a contour map in which pgr varies along the axes in the same way that the height of land above sea level varies with latitude and longitude. In laboratory experiments we measured the pgr of Daphnia magna over a grid of values of pH and Ca2+, and so defined its "laboratory niche'' in pH-Ca2+ space. The position of the laboratory niche boundary suggests that population persistence is only possible above 0.5 mg Ca2+/L and between pH 5.75 and pH 9, though more Ca2+ is needed at lower pH values. To see how well the measured niche predicts the field distribution of D. magna, we examined relevant field data from 422 sites in England and Wales. Of the 58 colonized water bodies, 56 lay within the laboratory niche. Very few of the sites near the niche boundary were colonized, probably because pgr there is so low that populations are vulnerable to extinction by other factors. Our study shows how the niche can be quantified and used to predict field distributions successfully.
Resumo:
Waterbirds have been proposed as important vectors for the passive dispersal of those aquatic invertebrates and plants that lack a capacity for active dispersal between isolated water bodies. We analysed the frequency of internal transport of bryozoan propagules (statoblasts) by waterbirds in Donana, Spain, by examining their presence in the intestines and ceca of dead birds and analysing the role of different aspects of gut characteristics in explaining variation in the presence/absence and abundance of statoblasts. Of the 228 samples examined, 7.9% presented intact statoblasts of Plumatella fungosa (Pallas, 1768), Plumatella emarginata Allman, 1844, and two unidentified Plumatella species. For a given bird species, individuals with heavier gizzards and shorter ceca had a lower incidence and abundance of statoblasts in the lower gut. Grit mass and intestine length were unrelated to the presence or abundance of statoblasts. Our results suggest that waterbirds frequently transport bryozoans on a local scale, with lighter gizzards and longer ceca favouring such transport. Lighter gizzards are likely to destroy fewer propagules before they reach the lower gut. Species and individuals with longer ceca are particularly good candidates for long-distance dispersal of bryozoans, given the longer passage time of propagules that enter the ceca.