989 resultados para urban lake watershed
Resumo:
Purpose – As a consequence of rapid urbanisation and globalisation, cities have become the engines of population and economic growth. Hence, natural resources in and around the cities have been exposed to externalities of urban development processes. This paper introduces a new sustainability assessment approach that is tested in a pilot study. The paper aims to assist policy-makers and planners investigating the impacts of development on environmental systems, and produce effective policies for sustainable urban development. Design/methodology/approach – The paper introduces an indicator-based indexing model entitled “Indexing Model for the Assessment of Sustainable Urban Ecosystems” (ASSURE). The ASSURE indexing model produces a set of micro-level environmental sustainability indices that is aimed to be used in the evaluation and monitoring of the interaction between human activities and urban ecosystems. The model is an innovative approach designed to assess the resilience of ecosystems towards impacts of current development plans and the results serve as a guide for policymakers to take actions towards achieving sustainability. Findings – The indexing model has been tested in a pilot case study within the Gold Coast City, Queensland, Australia. This paper presents the methodology of the model and outlines the preliminary findings of the pilot study. The paper concludes with a discussion on the findings and recommendations put forward for future development and implementation of the model. Originality/value – Presently, there is a few sustainability indices developed to measure the sustainability at local, regional, national and international levels. However, due to challenges in data collection difficulties and availability of local data, there is no effective assessment model at the microlevel that the assessment of urban ecosystem sustainability accurately. The model introduced in this paper fills this gap by focusing on parcel-scale and benchmarking the environmental performance in micro-level.
Resumo:
Background: Periurban agriculture refers to agricultural practice occurring in areas with mixed rural and urban features. It is responsible 25% of the total gross value of economic production in Australia, despite only comprising 3% of the land used for agriculture. As populations grows and cities expand, they are constantly absorbing surrounding fringe areas, thus creating a new fringe, further from the city causing the periurban region to constantly shift outwards. Periurban regions are fundamental in the provision of fresh food to city populations and residential (and industrial) expansion taking over agricultural land has been noted as a major worldwide concern. Another major concern around the increase in urbanisation and resultant decrease in periurban agriculture is its potential effect on food security. Food security is the availability or access to nutritionally-adequate, culturally-relevant and safe foods in culturally-appropriate ways. Thus food insecurity occurs when access to or availability of these foods is compromised. There is an important level of connectedness between food security and food production and a decrease in periurban agriculture may have adverse effects on food security. A decrease in local, seasonal produce may result in a decrease in the availability of products and an increase in cost, as food must travel greater distances, incurring extra costs present at the consumer level. Currently, few Australian studies exist examining the change in periurban agriculture over time. Such information may prove useful for future health policy and interventions as well as infrastructure planning. The aim of this study is to investigate changes in periurban agriculture among capital cities of Australia. Methods: We compared data pertaining to selected commodities from the Australian Bureau of Statistics 2000-01 and 2005 -2006 Agricultural Census. This survey is distributed online or via mail on a five-yearly basis to approximately 175,000 Agricultural business to ascertain information on a range of factors, such as types of crops, livestock and land preparation practices. For the purpose of this study we compared the land being used for total crops, and cereal , oil seed, legume, fruit and vegetable crops separately. Data was analysed using repeated measures anova in spss. Results: Overall, total area available for crops in urbanised areas of Australia increased slightly by 1.8%. However, Sydney, Melbourne, Adelaide and Perth experienced decreases in the area available for fruit crops by 11%, 5%,and 4% respectively. Furthermore, Brisbane and Perth experienced decreases in land available for vegetable crops by 28% and 14% respectively. Finally, Sydney, Adelaide and Perth experienced decreases in land available for cereal crops by 10 – 79%. Conclusions: These findings suggest that population increases and consequent urban sprawl may be resulting in a decrease in peri-urban agriculture, specifically for several core food groups including fruit, breads and grain based foods. In doing so, access to or availability of these foods may be limited, and the cost of these foods is likely to increase, which may compromise food insecurity for certain sub-groups of the population.
Resumo:
Urban land use planning and policy decisions are often contested, with the multiple stakeholders (business, developers, residents, policymakers and the wider community) frequently holding opposing viewpoints about the issues and best solution. In recent years, however, the participatory process of social impact assessment (SIA) has received significant attention as a way to mitigate conflict, facilitating negotiation and conflict resolution. This paper examines how social impacts have informed development appeals in Australia, focussing on ten cases from the Queensland Planning and Environment Court (QPEC). Half are appeals from community members (typically neighbours) wanting to oppose approvals and half from organisations appealing against City Councils’ decisions to deny their development applications. While legal challenges do not necessarily reflect attitudes and practices, they provide a means to begin to assess how social impacts (although not often explicitly defined as such) inform development related disputes. Based on the nature and outcomes of 10 QPEC cases, we argue that many legal cases could have been avoided if SIA had been undertaken appropriately. First, the issues in each case are clearly social, incorporating impacts on amenity, the character of an area, the needs of different social groups, perceptions of risk and a range of other social issues. Second, the outcomes and recommendations from each case, such as negotiating agreements, modifying plans and accommodating community concerns would have been equally served thorough SIA. Our argument is that engagement at an early stage, utilising SIA, could have likely achieved the same result in a less adversarial and much less expensive and time-consuming environment than a legal case.
Resumo:
Atmospheric deposition is one of the most important pathways of urban stormwater pollution. Atmospheric deposition which can be in the form of either wet or dry deposition have distinct characteristics in terms of associated particulate sizes, pollutant types and influential parameters. This paper discusses the outcomes of a comprehensive research study undertaken to identify important traffic characteristics and climate factors such as antecedent dry period and rainfall characteristics which influences the characteristics of wet and dry deposition of solids and heavy metals. The outcomes confirmed that Zinc (Zn) is correlated with traffic volume whereas Lead (Pb), Cadmium (Cd), Nickel (Ni), and Copper (Cu) are correlated with traffic congestion. Consequently, reducing traffic congestion will be more effective than reducing traffic volume for improving air quality particularly in relation to Pb, Cd, Ni, and Cu. Zn was found to have the highest atmospheric deposition rate compared to other heavy metals. Zn in dry deposition is associated with relatively larger particle size fractions (>10 µm), whereas Pb, Cd, Ni and Cu are associated with relatively smaller particle size fractions (<10 µm). The analysis further revealed that bulk (wet plus dry) deposition which is correlated with rainfall depth and contains a relatively higher percentage of smaller particles compared to dry deposition which is correlated with the antecedent dry period. As particles subjected to wet deposition are smaller, they disperse over a larger area from the source of origin compared to particles subjected to dry deposition as buoyancy forces become dominant for smaller particles compared to the influence of gravity. Furthermore, exhaust emission particles were found to be primarily associated with bulk deposition compared to dry deposition particles which mainly originate from vehicle component wear.
Resumo:
In the era of a global knowledge economy, urban regions that seek to increase their competitive edge, become destinations for talent and investment and provide prosperity and high quality of life to their inhabitants have little chance of achieving these goals without forming effective knowledge-based urban development strategies. The research reported in this paper aims to address the questions of how a knowledge-based urban development performance measurement can be undertaken and the value contribution of such measurement. The paper focuses on the city of Helsinki. This empirical study analytically investigates Helsinki’s performance from the lens of knowledge-based urban development by comparing this urban region with eight international competitors, Boston, San Francisco, Birmingham, Manchester, Melbourne, Sydney, Toronto, and Vancouver. The results of the study not only reveal a clearer understanding of Helsinki’s benchmarked performance and competitive edge considering the regional policy context along with strategic directions in strengthening its international standing and competitiveness but also provide useful insights for other urban regions that aspire to such development.
Resumo:
The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option.
Resumo:
The Queensland government planning policies actively encourage increased dwelling density, sustainable infill development and transit oriented development to maximise land use and minimise urban sprawl. One of the detriments of such a policy is the potential for intensified residential development to create conflict between lawfully operating existing industrial uses and residences. In particular the government is concerned that intensified urban development will increase the risk of litigation from landowners and tenants detrimentally affected by the emission of aerosols, fumes, light, noise, odour, particles or smoke from existing industrial premises.
Resumo:
The relationship between Heritage Language and ethnic identity has gained significant research ground in North America. However, there is a dearth of similar research conducted in other regions of the world. There seems to be little if any work investigating the link between Chinese Australians’ ethnic identity and their Chinese Heritage Language. This sociological quantitative study interpreted Chinese Australians’ “Chineseness” as their ethnic identity, linked this “Chineseness” to their Chinese Heritage Language, and did so by virtue of Bourdieu’s key concept ‘habitus’. 227 cases were analyzed by Structural Equation Modelling. The result demonstrated a statistically significant strong positive relationship between Chinese Australian urban young adults’ “Chineseness” and their self-perceptions of their Chinese Heritage Language proficiency (r=.73). This paper explained the findings in light of Bourdieu’s (1991) contention that people make choices about languages according to the habitus they have.
Resumo:
Studies of Heritage Language learners‟ commitment and their ethnic identity are increasing, yet there is scant sociological research addressing topics relating to Chinese Heritage Language learners. Drawing on Bourdieu‟s signature notions of „habitus‟, „capital‟, and „field‟, this mixed methods study investigates two problems: (1) impacts of “Chineseness” and accessible resources on Chinese Heritage Language proficiency of young Chinese Australian adults in urban Australia; and (2) the meanings of Chinese Heritage Language to these young people.
Resumo:
Reliable approaches for predicting pollutant build-up are essential for accurate urban stormwater quality modelling. Based on the in-depth investigation of metal build-up on residential road surfaces, this paper presents empirical models for predicting metal loads on these surfaces. The study investigated metals commonly present in the urban environment. Analysis undertaken found that the build-up process for metals primarily originating from anthropogenic (copper and zinc) and geogenic (aluminium, calcium, iron and manganese) sources were different. Chromium and nickel were below detection limits. Lead was primarily associated with geogenic sources, but also exhibited a significant relationship with anthropogenic sources. The empirical prediction models developed were validated using an independent data set and found to have relative prediction errors of 12-50%, which is generally acceptable for complex systems such as urban road surfaces. Also, the predicted values were very close to the observed values and well within 95% prediction interval.
Resumo:
This paper reports on the new literacy demands in the middle years of schooling project in which the affordances of placed-based pedagogy are being explored through teacher inquiries and classroom-based design experiments. The school is located within a large-scale urban renewal project in which houses are being demolished and families relocated. The original school buildings have recently been demolished and replaced by a large ‘superschool’ which serves a bigger student population from a wider area. Drawing on both quantitative and qualitative data, the teachers reported that the language literacy learning of students (including a majority of students learning English as a second language) involved in the project exceeded their expectations. The project provided the motivation for them to develop their oral language repertoires, by involving them in processes such as conducting interviews with adults for their oral histories, through questioning the project manager in regular meetings, and through reporting to their peers and the wider community at school assemblies. At the same time students’ written and multimodal documentation of changes in the neighbourhood and the school grounds extended their literate and semiotic repertoires as they produced books, reports, films, powerpoints, visual designs and models of structures.
Resumo:
This paper presents a methodology for real-time estimation of exit movement-specific average travel time on urban routes by integrating real-time cumulative plots, probe vehicles, and historic cumulative plots. Two approaches, component based and extreme based, are discussed for route travel time estimation. The methodology is tested with simulation and is validated with real data from Lucerne, Switzerland, that demonstrate its potential for accurate estimation. Both approaches provide similar results. The component-based approach is more reliable, with a greater chance of obtaining a probe vehicle in each interval, although additional data from each component is required. The extreme-based approach is simple and requires only data from upstream and downstream of the route, but the chances of obtaining a probe that traverses the entire route might be low. The performance of the methodology is also compared with a probe-only method. The proposed methodology requires only a few probes for accurate estimation; the probe-only method requires significantly more probes.
Resumo:
Air pollution has significant impacts on both the environment and human health. Therefore, urban areas have received ever growing attention, because they not only have the highest concentrations of air pollutants, but they also have the highest human population. In modern societies, urban air quality (UAQ) is routinely evaluated and local authorities provide regular reports to the public about current UAQ levels. Both local and international authorities also recommended that some air pollutant concentrations remain below a certain level, with the aim of reducing emissions and improving the air quality, both in urban areas and on a more regional scale. In some countries, protocols aimed at reducing emissions have come in force as a result of international agreements.
Resumo:
This paper characterises nitrogen and phosphorus wash-off processes on urban road surfaces to create fundamental knowledge to strengthen stormwater treatment design. The study outcomes confirmed that the composition of initially available nutrients in terms of their physical association with solids and chemical speciation determines the wash-off characteristics. Nitrogen and phosphorus wash-off processes are independent of land use, but there are notable differences. Nitrogen wash-off is a “source limiting” process while phosphorus wash-off is “transport limiting”. Additionally, a clear separation between nitrogen and phosphorus wash-off processes based on dissolved and particulate forms confirmed that the common approach of replicating nutrients wash-off based on solids wash-off could lead to misleading outcomes particularly in the case of nitrogen. Nitrogen is present primarily in dissolved and organic form and readily removed even by low intensity rainfall events, which is an important consideration for nitrogen removal targeted treatment design. In the case of phosphorus, phosphate constitutes the primary species in wash-off for the particle size fraction <75 µm, while other species are predominant in particle size range >75 µm. This means that phosphorus removal targeted treatment design should consider both phosphorus speciation as well as particle size.