917 resultados para upwind compact difference schemes on non-uniform meshes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the discontinuous Galerkin approximation of the Maxwell eigenproblem. After reviewing the theory developed in [5], we present a set of numerical experiments which both validate the theory, and provide further insight regarding the practical performance of discontinuous Galerkin methods, particularly in the case when non-conforming meshes, characterized by the presence of hanging nodes, are employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel members are extensively used in the building construction industry, especially in residential, commercial and industrial buildings. In recent times, fire safety has become important in structural design due to increased fire damage to properties and loss of lives. However, past research into the fire performance of cold-formed steel members has been limited, and was confined to compression members. Therefore a research project was undertaken to investigate the structural behaviour of compact cold-formed steel lipped channel beams subject to inelastic local buckling and yielding, and lateral-torsional buckling effects under simulated fire conditions and associated section and member moment capacities. In the first phase of this research, an experimental study based on tensile coupon tests was undertaken to obtain the mechanical properties of elastic modulus and yield strength and the stress-strain relationship of cold-formed steels at uniform ambient and elevated temperatures up to 700oC. The mechanical properties deteriorated with increasing temperature and are likely to reduce the strength of cold-formed beams under fire conditions. Predictive equations were developed for yield strength and elastic modulus reduction factors while a modification was proposed for the stressstrain model at elevated temperatures. These results were used in the numerical modelling phases investigating the section and member moment capacities. The second phase of this research involved the development and validation of two finite element models to simulate the behaviour of compact cold-formed steel lipped channel beams subject to local buckling and yielding, and lateral-torsional buckling effects. Both models were first validated for elastic buckling. Lateral-torsional buckling tests of compact lipped channel beams were conducted at ambient temperature in order to validate the finite element model in predicting the non-linear ultimate strength behaviour. The results from this experimental study did not agree well with those from the developed experimental finite element model due to some unavoidable problems with testing. However, it highlighted the importance of magnitude and direction of initial geometric imperfection as well as the failure direction, and thus led to further enhancement of the finite element model. The finite element model for lateral-torsional buckling was then validated using the available experimental and numerical ultimate moment capacity results from past research. The third phase based on the validated finite element models included detailed parametric studies of section and member moment capacities of compact lipped channel beams at ambient temperature, and provided the basis for similar studies at elevated temperatures. The results showed the existence of inelastic reserve capacity for compact cold-formed steel beams at ambient temperature. However, full plastic capacity was not achieved by the mono-symmetric cold-formed steel beams. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity. Comparison of member capacity results from finite element analyses with current design rules showed that they do not give accurate predictions of lateral-torsional buckling capacities at ambient temperature and hence new design rules were developed. The fourth phase of this research investigated the section and member moment capacities of compact lipped channel beams at uniform elevated temperatures based on detailed parametric studies using the validated finite element models. The results showed the existence of inelastic reserve capacity at elevated temperatures. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity in fire design codes, ambient temperature design codes as well as those proposed by other researchers. The results showed that lateral-torsional buckling capacities are dependent on the ratio of yield strength and elasticity modulus reduction factors and the level of non-linearity in the stress-strain curves at elevated temperatures in addition to the temperature. Current design rules do not include the effects of non-linear stress-strain relationship and therefore their predictions were found to be inaccurate. Therefore a new design rule that uses a nonlinearity factor, which is defined as the ratio of the limit of proportionality to the yield stress at a given temperature, was developed for cold-formed steel beams subject to lateral-torsional buckling at elevated temperatures. This thesis presents the details and results of the experimental and numerical studies conducted in this research including a comparison of results with predictions using available design rules. It also presents the recommendations made regarding the accuracy of current design rules as well as the new developed design rules for coldformed steel beams both at ambient and elevated temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with the problem of the instantaneous frequency (IF) estimation of sinusoidal signals. This topic plays significant role in signal processing and communications. Depending on the type of the signal, two major approaches are considered. For IF estimation of single-tone or digitally-modulated sinusoidal signals (like frequency shift keying signals) the approach of digital phase-locked loops (DPLLs) is considered, and this is Part-I of this thesis. For FM signals the approach of time-frequency analysis is considered, and this is Part-II of the thesis. In part-I we have utilized sinusoidal DPLLs with non-uniform sampling scheme as this type is widely used in communication systems. The digital tanlock loop (DTL) has introduced significant advantages over other existing DPLLs. In the last 10 years many efforts have been made to improve DTL performance. However, this loop and all of its modifications utilizes Hilbert transformer (HT) to produce a signal-independent 90-degree phase-shifted version of the input signal. Hilbert transformer can be realized approximately using a finite impulse response (FIR) digital filter. This realization introduces further complexity in the loop in addition to approximations and frequency limitations on the input signal. We have tried to avoid practical difficulties associated with the conventional tanlock scheme while keeping its advantages. A time-delay is utilized in the tanlock scheme of DTL to produce a signal-dependent phase shift. This gave rise to the time-delay digital tanlock loop (TDTL). Fixed point theorems are used to analyze the behavior of the new loop. As such TDTL combines the two major approaches in DPLLs: the non-linear approach of sinusoidal DPLL based on fixed point analysis, and the linear tanlock approach based on the arctan phase detection. TDTL preserves the main advantages of the DTL despite its reduced structure. An application of TDTL in FSK demodulation is also considered. This idea of replacing HT by a time-delay may be of interest in other signal processing systems. Hence we have analyzed and compared the behaviors of the HT and the time-delay in the presence of additive Gaussian noise. Based on the above analysis, the behavior of the first and second-order TDTLs has been analyzed in additive Gaussian noise. Since DPLLs need time for locking, they are normally not efficient in tracking the continuously changing frequencies of non-stationary signals, i.e. signals with time-varying spectra. Nonstationary signals are of importance in synthetic and real life applications. An example is the frequency-modulated (FM) signals widely used in communication systems. Part-II of this thesis is dedicated for the IF estimation of non-stationary signals. For such signals the classical spectral techniques break down, due to the time-varying nature of their spectra, and more advanced techniques should be utilized. For the purpose of instantaneous frequency estimation of non-stationary signals there are two major approaches: parametric and non-parametric. We chose the non-parametric approach which is based on time-frequency analysis. This approach is computationally less expensive and more effective in dealing with multicomponent signals, which are the main aim of this part of the thesis. A time-frequency distribution (TFD) of a signal is a two-dimensional transformation of the signal to the time-frequency domain. Multicomponent signals can be identified by multiple energy peaks in the time-frequency domain. Many real life and synthetic signals are of multicomponent nature and there is little in the literature concerning IF estimation of such signals. This is why we have concentrated on multicomponent signals in Part-H. An adaptive algorithm for IF estimation using the quadratic time-frequency distributions has been analyzed. A class of time-frequency distributions that are more suitable for this purpose has been proposed. The kernels of this class are time-only or one-dimensional, rather than the time-lag (two-dimensional) kernels. Hence this class has been named as the T -class. If the parameters of these TFDs are properly chosen, they are more efficient than the existing fixed-kernel TFDs in terms of resolution (energy concentration around the IF) and artifacts reduction. The T-distributions has been used in the IF adaptive algorithm and proved to be efficient in tracking rapidly changing frequencies. They also enables direct amplitude estimation for the components of a multicomponent

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural convection of a two-dimensional laminar steady-state incompressible fluid flow in a modified rectangular enclosure with sinusoidal corrugated top surface has been investigated numerically. The present study has been carried out for different corrugation frequencies on the top surface as well as aspect ratios of the enclosure in order to observe the change in hydrodynamic and thermal behavior with constant corrugation amplitude. A constant flux heat source is flush mounted on the top sinusoidal wall, modeling a wavy sheet shaded room exposed to sunlight. The flat bottom surface is considered as adiabatic, while the both vertical side walls are maintained at the constant ambient temperature. The fluid considered inside the enclosure is air having Prandtl number of 0.71. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. The results in terms of isotherms, streamlines and average Nusselt numbers are obtained for the Rayleigh number ranging from 10^3 to 10^6 with constant physical properties for the fluid medium considered. It is found that the convective phenomena are greatly influenced by the presence of the corrugation and variation of aspect ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Database watermarking has received significant research attention in the current decade. Although, almost all watermarking models have been either irreversible (the original relation cannot be restored from the watermarked relation) and/or non-blind (requiring original relation to detect the watermark in watermarked relation). This model has several disadvantages over reversible and blind watermarking (requiring only watermarked relation and secret key from which the watermark is detected and original relation is restored) including inability to identify rightful owner in case of successful secondary watermarking, inability to revert the relation to original data set (required in high precision industries) and requirement to store unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store original database at a secure secondary storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines in advanced disease, earlystage disease and locally advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on early-stage disease. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines in advanced disease, early stage disease and locally-advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on 1st line / 2nd and further lines of treatment in advanced disease. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial variation of seismic ground motions is caused by incoherence effect, wave passage, and local site conditions. This study focuses on the effects of spatial variation of earthquake ground motion on the responses of adjacent reinforced concrete (RC) frame structures. The adjacent buildings are modeled considering soil-structure interaction (SSI) so that the buildings can be interacted with each other under uniform and non-uniform ground motions. Three different site classes are used to model the soil layers of SSI system. Based on fast Fourier transformation (FFT), spatially correlated non-uniform ground motions are generated compatible with known power spectrum density function (PSDF) at different locations. Numerical analyses are carried out to investigate the displacement responses and the absolute maximum base shear forces of adjacent structures subjected to spatially varying ground motions. The results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The responses of adjacent structures have changed remarkably due to spatial variation of ground motions. The effect can be significant on rock site rather than clay site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compact arrays enable various applications such as antenna beam-forming and multi-input, multi-output (MIMO) schemes on limited-size platforms. The reduced element spacing in compact arrays introduces high levels of mutual coupling which can affect the performance of the adaptive array. This coupling causes a mismatch at the input ports, which disturbs the performance of the individual elements in the array and affects the implementation of beam steering. In this article, a reactive decoupling network for a 3-element monopole array is used to establish port isolation while simultaneously matching input impedance at each port to the system impendence. The integrated decoupling and matching network is incorporated in the ground plane of the monopole array, providing further development scope for beamforming using phase shifters and power splitters in double-layered circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64–76% of peak VO2 and 71–90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the “vigorous” range of exercise intensity, at any of the step frequencies used in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with transient natural convection in an isosceles triangular enclosure subject to non-uniformly cooling at the inclined surfaces and uniformly heating at the base. The numerical simulations of the unsteady flows over a range of Rayleigh numbers and aspect ratios are carried out using Finite Volume Method. Since the upper inclined surfaces are linearly cooled and the bottom surface is heated, the flow is potentially unstable. It is revealed from the numerical simulations that the transient flow development in the enclosure can be classified into three distinct stages; an early stage, a transitional stage, and a steady stage. The flow inside the enclosure depends significantly on the governing parameters, Rayleigh number and aspect ratio. The effect of Rayleigh number and aspect ratio on the flow development and heat transfer rate are discussed. The key finding for this study is to analyze the pitchfork bifurcation of the flow about the geometric center line. The heat transfer through the roof and the ceiling as a form of Nusselt number is reported in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the kinematics of a curved shock of arbitrary strength has been discussed using the theory of generalised functions. This is the extension of Moslov’s work where he has considered isentropic flow even across the shock. The condition for a nontrivial jump in the flow variables gives the shock manifold equation (sme). An equation for the rate of change of shock strength along the shock rays (defined as the characteristics of the sme) has been obtained. This exact result is then compared with the approximate result of shock dynamics derived by Whitham. The comparison shows that the approximate equations of shock dynamics deviate considerably from the exact equations derived here. In the last section we have derived the conservation form of our shock dynamic equations. These conservation forms would be very useful in numerical computations as it would allow us to derive difference schemes for which it would not be necessary to fit the shock-shock explicitly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer code is developed for the numerical prediction of natural convection in rectangular two-dimensional cavities at high Rayleigh numbers. The governing equations are retained in the primitive variable form. The numerical method is based on finite differences and an ADI scheme. Convective terms may be approximated with either central or hybrid differencing for greater stability. A non-uniform grid distribution is possible for greater efficiency. The pressure is dealt with via a SIMPLE type algorithm and the use of a fast elliptic solver for the solenoidal velocity correction field significantly reduces computing times. Preliminary results indicate that the code is reasonably accurate, robust and fast compared with existing benchmarks and finite difference based codes, particularly at high Rayleigh numbers. Extension to three-dimensional problems and turbulence studies in similar geometries is readily possible and indicated.