884 resultados para unified theories and models of strong and electroweak
Resumo:
In this work we show the results obtained applying a Unified Dark Matter (UDM) model with a fast transition to a set of cosmological data. Two different functions to model the transition are tested, and the feasibility of both models is explored using CMB shift data from Planck [1], Galaxy Clustering data from [2] and [3], and Union2.1 SNe Ia [4]. These new models are also statistically compared with the ACDM and quiessence models using Bayes factor through evidence. Bayesian inference does not discard the UDM models in favor of ACDM.
Resumo:
The results of recent studies suggest that humans can form internal models that they use in a feedforward manner to compensate for both stable and unstable dynamics. To examine how internal models are formed, we performed adaptation experiments in novel dynamics, and measured the endpoint force, trajectory and EMG during learning. Analysis of reflex feedback and change of feedforward commands between consecutive trials suggested a unified model of motor learning, which can coherently unify the learning processes observed in stable and unstable dynamics and reproduce available data on motor learning. To our knowledge, this algorithm, based on the concurrent minimization of (reflex) feedback and muscle activation, is also the first nonlinear adaptive controller able to stabilize unstable dynamics.
Resumo:
We formulate and interpret several multi-modal registration methods in the context of a unified statistical and information theoretic framework. A unified interpretation clarifies the implicit assumptions of each method yielding a better understanding of their relative strengths and weaknesses. Additionally, we discuss a generative statistical model from which we derive a novel analysis tool, the "auto-information function", as a means of assessing and exploiting the common spatial dependencies inherent in multi-modal imagery. We analytically derive useful properties of the "auto-information" as well as verify them empirically on multi-modal imagery. Among the useful aspects of the "auto-information function" is that it can be computed from imaging modalities independently and it allows one to decompose the search space of registration problems.
Resumo:
Diabetes Mellitus (DM) has been found to have subtle yet profound effects on the metabolic status of the testis, the expression of numerous spermatogenic genes and is associated with increased numbers of sperm with nuclear DNA damage. The precise mechanism causing these detrimental effects remains unknown. The presence of increased levels of the most prominent member (carboxymethyllysine - CML) of the advanced glycation end product adducts and their receptor (RAGE) in the reproductive tract of DM men has provided a new avenue for research. As there are suspicions that the antibiotic (streptozotocin - STZ) employed to induce DM is also capable of causing oxidative stress and DNA damage, we compared CML and RAGE levels in the reproductive tract and sperm nDNA status of STZ mice with the levels in the Ins(2Akita) mouse to determine which more closely mimics the situation described in the human diabetic. CML was observed in the testes, epididymes and sperm of all animals. Sperm from DM mice showed particularly strong CML immunolocalization in the acrosomal cap, the equatorial region and whenever present, cytoplasmic droplets. Although increased, the level of CML on the sperm of the STZ and Ins(2Akita) DM mice did not reach statistical significance. RAGE was present on the developing acrosome and epididymal sperm of all animals and in discrete regions of the epididymes of the DM models. Only the epididymal sperm of the Ins(2Akita) mice were found to have significantly increased (p < 0.0001) nDNA damage. The Ins(2Akita) mouse therefore appears to more accurately reflect the conditions found in the human and, as such, is a more representative model for the study of diabetes and glycation's influence on male fertility.
Resumo:
The possibility of creating baryon asymmetry at the electroweak phase transition in the minimal supersymmetric standard model is considered for the case when right-handed squarks are much lighter than left-handed ones. It is shown that the usual requirement upsilon(T-c)/T-c greater than or similar to 1 for baryogenesis can be satisfied in a range of the parameters of the model, consistent with present experimental bounds.
Resumo:
Institutionalistische Theorien und hegemoniale Praktiken Globaler Politikgestaltung. Eine neue Beleuchtung der Prämissen Liberaler Demokratischer National-Staatlicher Ordnungen. Deutsche Zusammenfassung: Moderne Sozialwissenschaften, seien es Metatheorien der Internationalen Beziehungen, die Geschichte politischer Ökonomie oder Institutionentheorien, zeigen eine klare Dreiteilung von Weltanschauungen bzw. Paradigmen auf, die sich in allen „großen Debatten“ nachvollziehen lassen: Realismus, Liberalismus und Historischer Materialismus. Diese Grund legend unterschiedlichen Paradigmen lassen sich auch in aktuellen Ansätzen des Institutionalismus aufzeigen, liegen aber quer zu den von anderen Wissenschaftlern (Meyer, Rittberger, Hasenclever, Peters, Zangl) vorgenommenen Kategorisierungen der Institutionalismusschulen, die systemkritische Perspektiven in der Regel ignorieren oder vergleichsweise rudimentär diskutieren. Deshalb entwickelt diese Arbeit einen Vergleich von Institutionalismusschulen entlang der oben skizzierten Weltanschauungen. Das Ziel ist es, fundamentale Unterschiede zwischen den drei Paradigmen zu verdeutlichen und zu zeigen, wie ihre jeweiligen ontologischen und epistemologischen Prämissen die Forschungsdesigns und Methodologien der Institutionalismusschulen beeinflussen. In Teil I arbeite ich deshalb die Grund legenden Prämissen der jeweiligen Paradigmen heraus und entwickle in Teil II und III diesen Prämissen entsprechende Institutionalismus-Schulen, die Kooperation primär als Organisation von unüberwindbarer Rivalität, als Ergebnis zunehmender Konvergenz, oder als Ergebnis und Weiterentwicklung von Prozeduren der Interaktion versteht. Hier greife ich auf zeitgenössische Arbeiten anderer Autoren zurück und liefere damit einen Vergleich des aktuellen Forschungsstandes in allen drei Denktraditionen. Teil II diskutiert die zwei dominanten Institutionalismusschulen und Teil III entwickelt einen eigenen Gramscianischen Ansatz zur Erklärung von internationaler Kooperation und Institutionalisierung. Die übergeordnete These dieser Arbeit lautet, dass die Methodologien der dominanten Institutionalismusschulen teleologische Effekte haben, die aus dem Anspruch auf universell anwendbare, abstrahiert Konzepte resultieren und die Interpretation von Beobachtungen limitieren. Prämissen eines rational handelnden Individuums - entweder Konsequenzen kalkulierend oder Angemessenheit reflektierend – führen dazu, dass Kooperation und Institutionalisierung notwendiger Weise als die beste Lösung für alle Beteiligten in dieser Situation gelten müssen: Institutionen würden nicht bestehen, wenn sie nicht in der Summe allen Mitgliedern (egoistisch oder kooperativ motiviert) nützten. Durch diese interpretative „Brille“ finden wichtige strukturelle Gründe für die Verabschiedung internationaler Abkommen und Teile ihrer Effekte keine Berücksichtigung. Folglich können auch Abweichungen von erwarteten Ergebnissen nicht hinreichend erklärt werden. Meine entsprechende Hypothese lautet, dass systemkritische Kooperation konsistenter erklären können, da sie Akteure, Strukturen und die sie umgebenden Weltanschauungen selbst als analytische Kriterien berücksichtigen. Institutionalisierung wird dann als ein gradueller Prozess politischer Entscheidungsfindung, –umsetzung und –verankerung verstanden, der durch die vorherrschenden Institutionen und Interpretationen von „Realität“ beeinflusst wird. Jede politische Organisation wird als zeitlich-geographisch markierter Staatsraum (state space) verstanden, dessen Mandat die Festlegung von Prozeduren der Interaktion für gesellschaftliche Entwicklung ist. Politische Akteure handeln in Referenz auf diese offiziellen Prozeduren und reproduzieren und/oder verändern sie damit kontinuierlich. Institutionen werden damit als integraler Bestandteil gesellschaftlicher Entwicklungsprozesse verstanden und die Wirkungsmacht von Weltanschauungen – inklusive theoretischer Konzepte - berücksichtigt. Letztere leiten die Wahrnehmung und Interpretation von festgeschriebenen Regeln an und beeinflussen damit ihre empfundene Legitimation und Akzeptanz. Dieser Effekt wurde als „Staatsgeist“ („State Spirit“) von Montesquieu und Hegel diskutiert und von Antonio Gramsci in seiner Hegemonialtheorie aufgegriffen. Seine Berücksichtigung erlaubt eine konsistente Erklärung scheinbar irrationalen oder unangemessenen individuellen Entscheidens, sowie negativer Effekte konsensualer Abkommen. Zur Veranschaulichung der neu entwickelten Konzepte werden in Teil II existierende Fallstudien zur Welthandelsorganisation analysiert und herausgearbeitet, wie Weltanschauungen oder Paradigmen zu unterschiedlichen Erklärungen der Praxis führen. Während Teil II besonderes Augenmerk auf die nicht erklärten und innerhalb der dominanten Paradigmen nicht erklärbaren Beobachtungen legt, wendet Teil III die Gramscianischen Konzepte auf eben diese blinden Stellen an und liefert neue Einsichten. Im Ausblick wird problematisiert, dass scheinbar „neutrale“ wissenschaftliche Studien politische Positionen und Forderungen legitimieren und verdeutlicht im Sinne der gramscianischen Theorie, dass Wissenschaft selbst Teil politischer Auseinandersetzungen ist.
Resumo:
In this review we describe how concepts of shoot apical meristem function have developed over time. The role of the scientist is emphasized, as proposer, receiver and evaluator of ideas about the shoot apical meristem. Models have become increasingly popular over the last 250 years, and we consider their role. They provide valuable grounding for the development of hypotheses, but in addition they have a strong human element and their uptake relies on various degrees of persuasion. The most influential models are probably those that most data support, consolidating them as an insight into reality; but they also work by altering how we see meristems, re-directing us to influence the data we collect and the questions we consider meaningful.
Resumo:
This special issue is a testament to the recent burgeoning interest by theoretical linguists, language acquisitionists and teaching practitioners in the neuroscience of language. It offers a highly valuable, state-of-the-art overview of the neurophysiological methods that are currently being applied to questions in the field of second language (L2) acquisition, teaching and processing. Research in the area of neurolinguistics has developed dramatically in the past twenty years, providing a wealth of exciting findings, many of which are discussed in the papers in this volume. The goal of this commentary is twofold. The first is to critically assess the current state of neurolinguistic data from the point of view of language acquisition and processing—informed by the papers that comprise this special issue and the literature as a whole—pondering how the neuroscience of language/processing might inform us with respect to linguistic and language acquisition theories. The second goal is to offer some links from implications of exploring the first goal towards informing language teachers and the creation of linguistically and neurolinguistically-informed evidence-based pedagogies for non-native language teaching.
Resumo:
Is private money feasible and desirable? In its absence, is there a central bank policy that partially or fully substitutes for private money? In this paper, some recent modeling ideas about how to address these questioned are reviewed and applied. The main ideas are that people cannot commit to future actions and that their histories are to some extent unknown - are not common knowledge. Under the additional assumption that the private monies issued by diferent people are distinct, a strong recognizability assumption, it is shown that there is a role for private money.
Resumo:
The research activity carried out during the PhD course was focused on the development of mathematical models of some cognitive processes and their validation by means of data present in literature, with a double aim: i) to achieve a better interpretation and explanation of the great amount of data obtained on these processes from different methodologies (electrophysiological recordings on animals, neuropsychological, psychophysical and neuroimaging studies in humans), ii) to exploit model predictions and results to guide future research and experiments. In particular, the research activity has been focused on two different projects: 1) the first one concerns the development of neural oscillators networks, in order to investigate the mechanisms of synchronization of the neural oscillatory activity during cognitive processes, such as object recognition, memory, language, attention; 2) the second one concerns the mathematical modelling of multisensory integration processes (e.g. visual-acoustic), which occur in several cortical and subcortical regions (in particular in a subcortical structure named Superior Colliculus (SC)), and which are fundamental for orienting motor and attentive responses to external world stimuli. This activity has been realized in collaboration with the Center for Studies and Researches in Cognitive Neuroscience of the University of Bologna (in Cesena) and the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA). PART 1. Objects representation in a number of cognitive functions, like perception and recognition, foresees distribute processes in different cortical areas. One of the main neurophysiological question concerns how the correlation between these disparate areas is realized, in order to succeed in grouping together the characteristics of the same object (binding problem) and in maintaining segregated the properties belonging to different objects simultaneously present (segmentation problem). Different theories have been proposed to address these questions (Barlow, 1972). One of the most influential theory is the so called “assembly coding”, postulated by Singer (2003), according to which 1) an object is well described by a few fundamental properties, processing in different and distributed cortical areas; 2) the recognition of the object would be realized by means of the simultaneously activation of the cortical areas representing its different features; 3) groups of properties belonging to different objects would be kept separated in the time domain. In Chapter 1.1 and in Chapter 1.2 we present two neural network models for object recognition, based on the “assembly coding” hypothesis. These models are networks of Wilson-Cowan oscillators which exploit: i) two high-level “Gestalt Rules” (the similarity and previous knowledge rules), to realize the functional link between elements of different cortical areas representing properties of the same object (binding problem); 2) the synchronization of the neural oscillatory activity in the γ-band (30-100Hz), to segregate in time the representations of different objects simultaneously present (segmentation problem). These models are able to recognize and reconstruct multiple simultaneous external objects, even in difficult case (some wrong or lacking features, shared features, superimposed noise). In Chapter 1.3 the previous models are extended to realize a semantic memory, in which sensory-motor representations of objects are linked with words. To this aim, the network, previously developed, devoted to the representation of objects as a collection of sensory-motor features, is reciprocally linked with a second network devoted to the representation of words (lexical network) Synapses linking the two networks are trained via a time-dependent Hebbian rule, during a training period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from linguistic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with some shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits). PART 2. The ability of the brain to integrate information from different sensory channels is fundamental to perception of the external world (Stein et al, 1993). It is well documented that a number of extraprimary areas have neurons capable of such a task; one of the best known of these is the superior colliculus (SC). This midbrain structure receives auditory, visual and somatosensory inputs from different subcortical and cortical areas, and is involved in the control of orientation to external events (Wallace et al, 1993). SC neurons respond to each of these sensory inputs separately, but is also capable of integrating them (Stein et al, 1993) so that the response to the combined multisensory stimuli is greater than that to the individual component stimuli (enhancement). This enhancement is proportionately greater if the modality-specific paired stimuli are weaker (the principle of inverse effectiveness). Several studies have shown that the capability of SC neurons to engage in multisensory integration requires inputs from cortex; primarily the anterior ectosylvian sulcus (AES), but also the rostral lateral suprasylvian sulcus (rLS). If these cortical inputs are deactivated the response of SC neurons to cross-modal stimulation is no different from that evoked by the most effective of its individual component stimuli (Jiang et al 2001). This phenomenon can be better understood through mathematical models. The use of mathematical models and neural networks can place the mass of data that has been accumulated about this phenomenon and its underlying circuitry into a coherent theoretical structure. In Chapter 2.1 a simple neural network model of this structure is presented; this model is able to reproduce a large number of SC behaviours like multisensory enhancement, multisensory and unisensory depression, inverse effectiveness. In Chapter 2.2 this model was improved by incorporating more neurophysiological knowledge about the neural circuitry underlying SC multisensory integration, in order to suggest possible physiological mechanisms through which it is effected. This endeavour was realized in collaboration with Professor B.E. Stein and Doctor B. Rowland during the 6 months-period spent at the Department of Neurobiology and Anatomy of the Wake Forest University School of Medicine (NC, USA), within the Marco Polo Project. The model includes four distinct unisensory areas that are devoted to a topological representation of external stimuli. Two of them represent subregions of the AES (i.e., FAES, an auditory area, and AEV, a visual area) and send descending inputs to the ipsilateral SC; the other two represent subcortical areas (one auditory and one visual) projecting ascending inputs to the same SC. Different competitive mechanisms, realized by means of population of interneurons, are used in the model to reproduce the different behaviour of SC neurons in conditions of cortical activation and deactivation. The model, with a single set of parameters, is able to mimic the behaviour of SC multisensory neurons in response to very different stimulus conditions (multisensory enhancement, inverse effectiveness, within- and cross-modal suppression of spatially disparate stimuli), with cortex functional and cortex deactivated, and with a particular type of membrane receptors (NMDA receptors) active or inhibited. All these results agree with the data reported in Jiang et al. (2001) and in Binns and Salt (1996). The model suggests that non-linearities in neural responses and synaptic (excitatory and inhibitory) connections can explain the fundamental aspects of multisensory integration, and provides a biologically plausible hypothesis about the underlying circuitry.
Resumo:
The aim of this Thesis is to investigate the effect of heterogeneities within the subducting plate on the dynamics of subduction. In particular, I study the motion of the trench for oceanic and continental subduction, first, separately, and, then, together in the same system to understand how they interact. The understanding of these features is fundamental to reconstruct the evolution of complex subduction zones, such as the Central Mediterranean. For this purpose, I developed 2D and 3D numerical models of oceanic and continental subduction where the rheological, geometrical and compositional properties of the plates are varied. In these models, the trench and the overriding plate move self-consistently as a function of the dynamics of the system. The effect of continental subduction on trench migration is largely investigated. Results from a parametric study showed that despite different rheological properties of the plates, all models with a uniform continental crust share the same kinematic behaviour: the trench starts to advance once the continent arrives at the subduction zone. Hence, the advancing mode in continental collision scenarios is at least partly driven by an intrinsic feature of the system. Moreover, the presence of a weak lower crust within the continental plate can lead to the occurrence of delamination. Indeed, by changing the viscosity of the lower crust, both delamination and slab detachment can occur. Delamination is favoured by a low viscosity value of the lower crust, because this makes the mechanical decoupling easier between crust and lithospheric mantle. These features are observed both in 2D and 3D models, but the numerical results of the 3D models also showed that the rheology of the continental crust has a very strong effect on the dynamics of the whole system, since it influences not only the continental part of plate but also the oceanic sides.
Resumo:
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior) and solutions for the temperature-pressure profiles. Generally, the problem is mathematically under-determined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat and the properties of scattering both in optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing and incoming fluxes in the convective regime.
Resumo:
Metazoans have evolved ways to engage only the most appropriate cells for long-term tissue development and homeostasis. In many cases, competitive interactions have been shown to guide such cell selection events. In Drosophila, a process termed cell competition eliminates slow proliferating cells from growing epithelia. Recent studies show that cell competition is conserved in mammals with crucial functions like the elimination of suboptimal stem cells from the early embryo and the replacement of old T-cell progenitors in the thymus to prevent tumor formation. Moreover, new data in Drosophila has revealed that fitness indicator proteins, required for cell competition, are also involved in the culling of retinal neurons suggesting that 'fitness fingerprints' may play a general role in cell selection.
Resumo:
This congress proceedings volume includes all abstracts submitted to the 14th European Congress of Sport Psychology of the European Federation of Sport Psychology FEPSAC that have been accepted by the scientific evaluation committee. Content: six keynote lectures, Panteleimon ("Paddy") Ekkekakis: Escape from Cognitivism: Exercise as Hedonic Experience; Sergio Lara-Bercial and Cliff Mallett: Serial Winning Coaches – Vision, People and Environment; Kari Fasting: Sexual Harassment and Abuse in Sport – Implications for Sport Psychologists; Claudia Voelcker-Rehage: Benefits of Physical Activity and Fitness for Lifelong Motor and Cognitive Development – Brain and Behaviour; Nancy J. Cooke: Interactive Team Cognition: Focusing on Team Dynamics; Chris Harwood: Doing Sport Psychology? Critical Reflections as a Scientist-Practitioner. Abstracts of 11 invited symposia, 65 submitted symposia, 8 special sessions, and 5 poster sessions.
Resumo:
The reference librarian's task is to translate the patron's question into one that can be answered with the library's resources. The first element of that task is to know what the patron wants; the second is to know what resources the library has and how to use them. Reference librarians must learn continuously throughout their careers, both because new resources become available, but also because patrons present questions requiring new resources. This article will focus on how to determine what kind of information the patron needs through the reference interview.