944 resultados para tunable filter
Resumo:
In this letter, we demonstrate a broadly tunable InGaAsInP strained multiquantum-well external cavity diode laser, which operates in the spectral range of 14941667 nm. A maximum continuous-wave output power in excess of 81 mW and sidemode suppression ratio higher than 50 dB were achieved in the central part of the tuning range. Different pump current and temperature regimes are investigated. © 2006 IEEE.
Resumo:
A broadly tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source is demonstrated, consisting of an external cavity passively mode-locked laser diode with a tapered semiconductor amplifier. By employing chirped quantum-dot structures on both the oscillator's gain chip and amplifier, a wide tunability range between 1187 and 1283 nm is achieved. Under mode-locked operation, the highest output peak power of 4.39 W is achieved from the MOPA, corresponding to a peak power spectral density of 31.4 dBm/nm. © 1989-2012 IEEE.
Resumo:
Summary form only given. Broadly tunable compact visible laser sources in the spectral region of 500-650 nm are valuable in biophotonics, photomedicine and for many applications including spectroscopy, laser projection and confocal microscopy. Unfortunately, commercially available lasers of this spectral range are in practice bulky and inconvenient in use. An attractive method for the realization of portable visible laser sources is the frequency-doubling of the infrared laser diodes in a nonlinear crystal containing a waveguide [1]. Nonlinear crystal waveguides that offer an order-of-magnitude increase in the IR-to-visible conversion efficiency also enable a very different approach to second-harmonic generation (SHG) tunability in periodically-poled crystals, promising order-of-magnitude increase of wavelength range for SHG conversion. This is possible by utilization of a significant difference in the effective refractive indices of the high-order and low-order modes in multimode waveguides [2]. The recent availability of low-cost, good quality semiconductor diode lasers, offering the coverage of a broad spectral range between 1 µ?? and 1.3 µp? [3,4], in combination with well-established techniques to fabricate good quality waveguides in nonlinear crystals, allows compact tunable CW laser sources in the visible spectral region to be realized [2].
Resumo:
Here we present a compact tunable all-room-temperature frequency-doubling scheme, using a periodically poled potassium titanyl phosphate (PPKTP) waveguide and a QD-ECDL. A broad wavelength tunability of the second harmonic generated light (SHG) in the spectral region between 567.7 and 629.1 nm was achieved, with maximum conversion efficiencies in range of 0.34%-7.9%. The maximum output power for the SHG light was 4.11 mW at 591.5 nm, achieved for 52 mW of launched pump power at 1183 nm, resulting in a conversion efficiency of 7.9%.
Resumo:
We demonstrate a CW tunable compact all-room-temperature laser system in the visible spectral region from 567.7 nm to 629.1 nm, by frequency doubling in a periodically-poled KTP waveguide crystal using a tunable quantum-dot external-cavity diode laser.
Resumo:
The THz optoelectronics field is now maturing and semiconductor-based THz antenna devices are becoming more widely implemented as analytical tools in spectroscopy and imaging. Photoconductive (PC) THz switches/antennas are driven optically typically using either an ultrashort-pulse laser or an optical signal composed of two simultaneous longitudinal wavelengths which are beat together in the PC material at a THz difference frequency. This allows the generation of (photo)carrier pairs which are then captured over ultrashort timescales usually by defects and trapping sites throughout the active material lattice. Defect-implanted PC materials with relatively high bandgap energy are typically used and many parameters such as carrier mobility and PC gain are greatly compromised. This paper demonstrates the implementation of low bandgap energy InAs quantum dots (QDs) embedded in standard crystalline GaAs as both the PC medium and the ultrafast capture mechanism in a PC THz antenna. This semiconductor structure is grown using standard MBE methods and allows the device to be optically driven efficiently at wavelengths up to ~1.3 µm, in this case by a single tunable dual-mode QD diode laser.
Resumo:
A tunable master-oscillator power-amplifier (MOPA) picosecond optical pulse source using all chirped quantum dot (QD) structures is demonstrated (60nm tunability). Under fundamental mode-locked operation, the highest peak power of 4.39 W is achieved.
Resumo:
A compact all-room-temperature frequency-doubling scheme generating cw orange light with a periodically poled potassium titanyl phosphate waveguide and a quantum-dot external cavity diode laser is demonstrated. A frequency-doubled power of up to 4.3 mW at the wavelength of 612.9 nm with a conversion efficiency exceeding 10% is reported. Second harmonic wavelength tuning between 612.9 nm and 616.3 nm by changing the temperature of the crystal is also demonstrated. © Springer-Verlag 2010.
Resumo:
A broadly tunable quantum-dot based ultra-short pulse master oscillator power amplifier with different diffraction grating orders as an external-cavity resonance feedback is studied. A broader tuning range, narrower optical spectra as well as higher peak power spectal density (maximun of 1.37 W/nm) from the second-order diffraction beam are achieved compared to those from the first-order diffraction beam in spite of slightly broader pulse duration from the secondorder diffraction. © The Institution of Engineering and Technology 2013.
Resumo:
Quasi-phase-matching is an important and widelyused technique in nonlinear optics enabling efficient frequency up-conversion. However, since its introduction almost half a century ago, this technique is well developed for near infrared (IR) but is intrinsically limited in spectral tunability in the visible range by the strict conditions set by the spatial modulation which compensates the momentum mismatch imposed by the dispersion. Here, we provide a fundamental generalization of quasi-phase-matching based on the utilization of a significant difference in the effective refractive indices of the high- and low-order modes in multimode waveguides. This concept enables to match the period of poling in a very broad wavelength range and opens up a new avenue for an order-ofmagnitude increase in wavelength range for frequency conversion from a single crystal. Using this approach, we demonstrate an all-room-temperature continuous-wave (CW) second harmonic generation (SHG) with over 60 nm tunability from green to red in a periodically-poled potassium titanyl phosphate (PPKTP) waveguide pumped by a single broadly-tunable quantumdot laser diode. © 2012 by Astro, Ltd.
Resumo:
Room temperature, tunable, external-cavity short-wavelength InAs/AlSb quantum cascade laser (QCL) is reported. Wavelength tuning of 85 nm for the spectral range between 3190 nm and 3275 nm has been achieved by rotating the diffraction grating forming the external cavity. To suppress lasing inside the QCL cavity, its ridge was tilted by 7° at the external cavity end. The optimal tilting angle of the laser ridge was chosen by careful consideration of the return losses of the TM-polarized waveguide mode from the diffraction grating in a quasi-Littrow configuration and the Fabry-Pérot feedback from the tilted laser facet. No antireflection coating was used. © 2013 American Institute of Physics.
Resumo:
A compact picosecond all-room-temperature orange-to-red tunable laser source in the spectral region between 600 and 627 nm is demonstrated. The tunable radiation is obtained by second-harmonic generation in a periodically poled potassium titanyl phosphate (PPKTP) multimode waveguide using a tunable quantum-dot external-cavity mode-locked laser. The maximum second-harmonic output peak power of 3.91 mW at 613 nm is achieved for 85.94 mW of launched pump peak power at 1226 nm, resulting in conversion efficiency of 4.55%. © 2013 Optical Society of America.
Resumo:
A record broadly tunable high-power external cavity InAs/GaAs quantum-dot diode laser with a tuning range of 202 nm (1122 nm-1324 nm) is demonstrated. A maximum output power of 480 mW and a side-mode suppression ratio greater than 45 dB are achieved in the central part of the tuning range. We exploit a number of strategies for enhancing the tuning range of external cavity quantum-dot lasers. Different waveguide designs, laser configurations and operation conditions (pump current and temperature) are investigated for optimization of output power and tunability. (C) 2010 Optical Society of America
Resumo:
We demonstrate a compact all-room-temperature picosecond laser source broadly tunable in the visible spectral region between 600 nm and 627 nm. The tunable radiation is obtained by frequency-doubling of a tunable quantum-dot external-cavity mode-locked laser in a periodically-poled KTP multimode waveguide. In this case, utilization of a significant difference in the effective refractive indices of the high- and low-order modes enables to match the period of poling in a very broad wavelength range. The maximum achieved second harmonic output peak power is 3.25 mW at 613 nm for 71.43 mW of launched pump peak power at 1226 nm, resulting in conversion efficiency of 4.55%. © 2013 Copyright SPIE.
Resumo:
This paper proposes a novel design of optical filters based on a cascade of tailored fiber Bragg gratings (FBGs) operating in the transmission regime. As an example of the application of the proposed general technique, ultranarrow optical vestigial sideband (VSB) filtering based on two FBGs operating in the transmission regime was examined. This design can be easily implemented by writing FBG-based filters for each wavelengthdivision-multiplexing channel before multiplexing. © 2006 IEEE.