953 resultados para translational-vibrational energy transfer
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.
Resumo:
Fluorindate glasses containing 1,2,3,4 ErF3 mol % were prepared in a dry box under argon atmosphere. Absorption, Stokes luminescence (under visible and infrared excitation), the dependence of 4S3/2, 4I11/2, and 4I13/2 lifetimes with Er concentration, and upconversion under Ti-saphire laser excitation at λ=790 nm were measured, mostly at T=77 and 300 K. The upconversion results in a strong green emission and weaker blue and red emissions whose intensity obeys a power-law behavior I∼Pn, where P is the infrared excitation power and n=1.6, 2.1, and 2.9 for the red, green, and blue emissions, respectively. The red emission exponent n=1.5 can be explained by a cross relaxation process. The green and blue emissions are due to excited state absorption (ESA) and energy transfer (ET) processes that predict a factor n=2 and n=3 for the green and blue emissions, respectively. From transient measurements we concluded that for lightly doped samples the green upconverted emission is originated due to both processes ESA and ET. However, for heavily doped samples ET is the dominant process.
Resumo:
We have observed ultraviolet upconversion fluorescence from the 4D3/2 and 2P3/2 levels of Nd3+ in fluoroindate glass under infrared pumping. It was found that the excitation of a large population in the 4F3/2 metastable level allows to achieve strong upconversion emissions at 354 and 382 nm. A simple rate equation model reproduces the temporal behavior of the upconverted emission and allows us to estimate the energy transfer rate among three Nd3+ ions participating in the process. © 1997 American Institute of Physics.
Resumo:
We report on efficient frequency upconversion in Er3+-doped fluoroindate glass. The process is observed under 1.48 μm laser diode excitation and results in fluorescence generation in the range from ultraviolet to near-infrared radiation. The study was performed for samples containing 1, 2, and 3 ErF3 mol % in the range of temperatures from 24 to 448 K. The upconverted signals were studied as a function of the laser intensity, and their dynamical behavior is described using a rate equation model which allows us to obtain the energy transfer rates between Er3+ ions in pairs and triads.
Resumo:
We report the observation of frequency upconversion in fluoroindate glasses with the following compositions: (mol%) (39 - x)InF3-20ZnF2-20SrF2-16BaF 2-2GdF3-2NaF-1GaF3-xNdF3 (x = 0.05, 0.1, 0.5, 1, 2, 3). The excitation source was a dye laser in resonance with the 4I9/2→(2G5/2, 2G7/2) transition of the Nd3+ ions. The upconverted fluorescence spectra show emissions from ∼ 350 to ∼ 450 nm, corresponding to transitions 4D3/2→4I9/2 ;4D3/2→4I11/2; 2P3/2→ 4I9/2; 4D3/2→4I13/2; 2P3/2→4I11/2; 4D3/2→4I15/2; and 2P3/2 → 4I13/2. The dependence of the fluorescence signals on the laser intensity indicates that two laser photons participate in the process. The temporal behavior of the signal indicates that energy transfer among the Nd3+ ions is the main mechanism which contributes to upconversion at 354 and 382 nm.
Resumo:
Optical absorption, Stokes, and anti-Stokes photoluminescence were performed on Er3+-Yb3+ co-doped fluoroindate glasses. For compounds prepared with a fixed 2 mol % ErF3 concentration and YbF3 contents ranging from 0 to 8 mol %, important upconversion processes were observed as a function of temperature and photon excitation energy. Based on the experimental data, two mechanisms for the upconversion (or anti-Stokes photoluminescence) processes were identified and analyzed in detail. At high Yb contents, the upconversion mechanisms are mostly determined by the population of the 2F5/2 levels of Yb3+ ions (or 4I11/2 levels of Er3+ ions, by energy transfer) regardless of the photon excitation energy and temperature of measurement. Moreover, green and red light emission have similar intensities when a large Yb3+ content is present. © 1998 American Institute of Physics.
Resumo:
Bright fluorescence in the visible range has been observed in Pr3+-Yb3+ doped fluoroindate glass under infrared diode laser irradiation. The mechanism which contributes for the upconversion emission is identified and the energy transfer rate between Pr3+-Yb3+ is obtained for different concentrations. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We report the observation of cooperative frequency upconversion in a fluoroindate glass. The experiments were performed by exciting Yb3+-Tb3+ codoped samples with an infrared diode laser. The process is monitored through the green fluorescence emitted by Tb3+ ions due to a cooperative energy transfer from a pair of excited Yb3+ ions. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Experiments with fast folding proteins are beginning to address the relationship between collapse and folding. We investigate how different scenarios for folding can arise depending on whether the folding and collapse transitions are concurrent or whether a nonspecific collapse precedes folding. Many earlier studies have focused on the limit in which collapse is fast compared to the folding time; in this work we focus on the opposite limit where, at the folding temperature, collapse and folding occur simultaneously. Real proteins exist in both of these limits. The folding mechanism varies substantially in these two regimes. In the regime of concurrent folding and collapse, nonspecific collapse now occurs at a temperature below the folding temperature (but slightly above the glass transition temperature).
Resumo:
We investigated near-infrared-to-blue upconversion from thulium (Tm 3+) doped in tellurite glasses upon continuous wave excitation near 800 nm. We observed an enhancement of over two orders of magnitude of the upconverted emission at ∼480nm when neodymium (Nd 3+) ions were codoped with Tm 3+ ions. For comparison, using a Tm 3+:Nd 3+ codoped fluorozirconate glass as a reference material we observed a 40-fold enhancement of the blue emission. Analysis of the blue emission for samples with different doping levels of Nd 3+ ions showed that energy transfer between Nd 3+ and Tm 3+ is the mechanism responsible for the enhancement in upconversion. © 2002 American Institute of Physics. © 2002 American Institute of Physics.