927 resultados para transcription factor 7 like 2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

TNF-α is a pleiotropic cytokine involved in normal homeostasis and plays a key role in defending the host from infection and malignancy. However when deregulated, TNF-α can lead to various disease states. Therefore, understanding the mechanisms by which TNF-α is regulated may aid in its control. In spite of the knowledge gained regarding the transcriptional regulation of TNF-α further characterization of specific TNF-α promoter elements remains to be elucidated. In particular, the T&barbelow;NF-α A&barbelow;P-1/C&barbelow;RE-like (TAC) element of the TNF-α promoter has been shown to be important in the regulation of TNF-α in lymphocytes. Activating transcription factor-2 (ATF-2) and c-Jun were shown to bind to and transactivate the TAC element However, the role of TAC and transcription factors ATF-2 and c-Jun in the regulation of TNF-α in monocytes is not as well characterized. Lipopolysaccharide (LPS), a potent activator of TNF-α in monocytes, provides a good model to study the involvement of TAC in TNF-α regulation. On the other hand, all-tram retinoic acid (ATRA), a physiological monocyte-differentiation agent, is unable to induce TNF-α protein release. ^ To delineate the functional role of TAC, we transfected the wildtype or the TAC deleted TNF-α promoter-CAT construct into THP-1 promonocytic cells before stimulating them with LPS. CAT activity was induced 17-fold with the wildtype TNF-α promoter, whereas the CAT activity was uninducible when the TAC deletion mutant was used. This daft suggests that TAC is vital for LPS to activate the TNF-α promoter. Electrophoretic mobility shift assays using the TAC element as a probe showed a unique pattern for LPS-activated cells: the disappearance of the upper band of a doublet seen in untreated and ATRA treated cells. Supershift analysis identified c-Jun and ATF-2 as components of the LPS-stimulated binding complex. Transient transfection studies using dominant negative mutants of JNK, c-Jun, or ATF-2 suggest that these proteins we important for LPS to activate the TNF-α promoter. Furthermore, an increase in phosphorylated or activated c-Jun was bound to the TAC element in LPS-stimulated cells. Increased c-Jun activation was correlated with increased activity of Jun N-terminal kinase (JNK), a known upstream stimulator of c-Jun and ATF-2, in LPS-stimulated monocytes. On the other hand, ATRA did not induce TNF-α protein release nor changes in the phosphorylation of c-Jun or JNK activity, suggesting that pathways leading to ATRA differentiation of monocytic cells are independent of TNF-α activation. Together, the induction of TNF-α gene expression seems to require JNK activation, and activated c-Jun binding to the TAC element of the TNF-α promoter in THP-1 promonocytic cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AP-2γ is a member of the AP-2 transcription factor family, is highly enriched in the trophoblast cell lineage, and is essential for placenta development. In an effort to identify factors regulating AP-2γ gene expression we isolated and characterized the promoter and 5′ flanking region of the mouse and human AP-2γ genes. The transcription start site of the mouse AP-2γ gene was mapped by primer extension and 5′ RACE. Transient gene transfer studies showed that basal promoter activity resides within a highly conserved ∼200 by DNA sequence located immediately upstream of the transcription start site. The conserved region is highly GC-rich and lacks typical TATA or CCAAT boxes. Multiple potential Sp and AP-2 binding sites are clustered within this region. Electrophoretic mobility shift assays demonstrated that Sp1 and Sp3 bind to three sites in the promoter region of the mouse AP-2γ gene. Combined mutation of the three putative Sp sites reduced promoter activity by 80% in trophoblast and non-trophoblast cells, demonstrating the functional importance of these sites in AP-2γ gene expression. ^ Mutational analysis of the 5′-flanking region revealed a 117-bp positive regulatory region of the mouse AP-2γ gene located between −5700 and −5583 upstream of the transcription start site. This 117-bp positive regulatory element provided approximately 7-fold enhancement of reporter gene expression in cultured trophoblast cells. A C/EBP-Sp1 transcription factor-binding module is located in this DNA sequence. Electrophoretic mobility shift assays demonstrated that transcription factors Sp1, Sp3 and C/EBP bind to the enhancer element. Mutation of each protein-binding site reduced the enhanced expression significantly. Mutagenesis assays showed that two other protein-binding sites also contribute to the enhancer activity. In summary, we have shown that Sp1 and Sp3 bind to cis-regulatory elements located in the promoter region and contribute to basal promoter activity. We have identified a 117-bp positive regulatory element of AP-2γ gene, and we have shown that Sp and C/EBP proteins bind to the cis -regulatory elements and contribute to the enhanced gene expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet radiation plays a critical role in the induction of non-melanoma skin cancer. UV radiation is also immune suppressive. Moreover, UV-induced systemic immune suppression is a major risk factor for skin cancer induction. Previous work had shown that UV exposure in vivo activates a cytokine cascade involving PGE2, IL-4, and IL-10 that induces immune suppression. However, the earliest molecular events that occur immediately after UV-exposure, especially those upstream of PGE2, were not well defined. To determine the initial events and mediators that lead to immune suppression after a pathological dose of UV, mouse keratinocytes were analyzed after sunlamp irradiation. It is known that UV-irradiated keratinocytes secrete the phospholipid mediator of inflammation, platelet-activating factor (PAF). Since PAF stimulates the production of immunomodulatory compounds, including PGE2, the hypothesis that UV-induced PAF activates cytokine production and initiates UV-induced immune suppression was tested. Both UV and PAF activated the transcription of cyclooxygenase (COX)-2 and IL-10 reporter gene constructs. A PAF receptor antagonist blocked UV-induced IL, 10 and COX-2 transcription. PAF mimicked the effects of UV in vivo and suppressed delayed-type hypersensitivity (DTH), and immune suppression was blocked when UV-irradiated mice were injected with a PAF receptor antagonist. This work shows that UV generates PAF-like oxidized lipids, that signal through the PAF receptor, activate cytokine transcription, and induce systemic immune suppression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TNF-induced activation of the transcription factor NF-κB and the c-jun N-terminal kinase (JNK/SAPK) requires TNF receptor-associated factor 2 (TRAF2). The NF-κB-inducing kinase (NIK) associates with TRAF2 and mediates TNF activation of NF-κB. Herein we show that NIK interacts with additional members of the TRAF family and that this interaction requires the conserved “WKI” motif within the TRAF domain. We also investigated the role of NIK in JNK activation by TNF. Whereas overexpression of NIK potently induced NF-κB activation, it failed to stimulate JNK activation. A kinase-inactive mutant of NIK was a dominant negative inhibitor of NF-κB activation but did not suppress TNF- or TRAF2-induced JNK activation. Thus, TRAF2 is the bifurcation point of two kinase cascades leading to activation of NF-κB and JNK, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TATA-binding protein (TBP)-related factor TRF1, has been described in Drosophila and a related protein, TRF2, has been found in a variety of higher eukaryotes. We report that human (h)TRF2 is encoded by two mRNAs with common protein coding but distinct 5′ nontranslated regions. One mRNA is expressed ubiquitously (hTRF2-mRNA1), whereas the other (hTRF2-mRNA2) shows a restricted expression pattern and is extremely abundant in testis. In addition, we show that hTRF2 forms a stable stoichiometric complex with hTFIIA, but not with TAFs, in HeLa cells stably transfected with flag-tagged hTRF2. Neither recombinant human (rh)TRF2 nor the native flag⋅hTRF2-TFIIA complex is able to replace TBP or TFIID in basal or activated transcription from various RNA polymerase II promoters. Instead, rhTRF2, but not the flag⋅hTRF2–TFIIA complex, moderately inhibits basal or activated transcription in the presence of rhTBP or flag⋅TFIID. This effect is either completely (TBP-mediated transcription) or partially (TFIID-mediated transcription) counteracted by addition of free TFIIA. Neither rhTRF2 nor flag⋅hTRF2–TFIIA has any effect on the repression of TFIID-mediated transcription by negative cofactor-2 (NC2) and neither substitutes for TBP in RNA polymerase III-mediated transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertonicity (most often present as high salinity) is stressful to the cells of virtually all organisms. Cells survive in a hypertonic environment by increasing the transcription of genes whose products catalyze cellular accumulation of compatible osmolytes. In mammals, the kidney medulla is normally hypertonic because of the urinary concentrating mechanism. Cellular accumulation of compatible osmolytes in the renal medulla is catalyzed by the sodium/myo-inositol cotransporter (SMIT), the sodium/chloride/betaine cotransporter, and aldose reductase (synthesis of sorbitol). The importance of compatible osmolytes is underscored by the necrotic injury of the renal medulla and subsequent renal failure that results from the inhibition of SMIT in vivo by administration of a specific inhibitor. Tonicity-responsive enhancers (TonE) play a key role in hypertonicity-induced transcriptional stimulation of SMIT, sodium/chloride/betaine cotransporter, and aldose reductase. We report the cDNA cloning of human TonE binding protein (TonEBP), a transcription factor that stimulates transcription through its binding to TonE sequences via a Rel-like DNA binding domain. Western blot and immunohistochemical analyses of cells cultured in hypertonic medium reveal that exposure to hypertonicity elicits slow activation of TonEBP, which is the result of an increase in TonEBP amount and translocation to the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent data indicate that sustained elevations in plasma insulin suppress the mRNA for IRS-2, a component of the insulin signaling pathway in liver, and that this deficiency contributes to hepatic insulin resistance and inappropriate gluconeogenesis. Here, we use nuclear run-on assays to show that insulin inhibits transcription of the IRS-2 gene in the livers of intact rats. Insulin also inhibited transcription of a reporter gene driven by the human IRS-2 promoter that was transfected into freshly isolated rat hepatocytes. The human promoter contains a heptanucleotide sequence, TGTTTTG, that is identical to the insulin response element (IRE) identified previously in the promoters of insulin-repressed genes. Single base pair substitutions in this IRE decreased transcription of the IRS-2-driven reporter in the absence of insulin and abolished insulin-mediated repression. We conclude that insulin represses transcription of the IRS-2 gene by blocking the action of a positive factor that binds to the IRE. Sustained repression of IRS-2, as occurs in chronic hyperinsulinemia, contributes to hepatic insulin resistance and accelerates the development of the diabetic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells of the craniofacial skeleton are derived from a common mesenchymal progenitor. The regulatory factors that control their differentiation into various cell lineages are unknown. To investigate the biological function of dentin matrix protein 1 (DMP1), an extracellular matrix gene involved in calcified tissue formation, stable transgenic cell lines and adenovirally infected cells overexpressing DMP1 were generated. The findings in this paper demonstrate that overexpression of DMP1 in pluripotent and mesenchyme-derived cells such as C3H10T1/2, MC3T3-E1, and RPC-C2A can induce these cells to differentiate and form functional odontoblast-like cells. Functional differentiation of odontoblasts requires unique sets of genes being turned on and off in a growth- and differentiation-specific manner. The genes studied include transcription factors like core binding factor 1 (Cbfa1), bone morphogenetic protein 2 (BMP2), and BMP4; early markers for extracellular matrix deposition like alkaline phosphatase (ALP), osteopontin, osteonectin, and osteocalcin; and late markers like DMP2 and dentin sialoprotein (DSP) that are expressed by terminally differentiated odontoblasts and are responsible for the formation of tissue-specific dentin matrix. However, this differentiation pathway was limited to mesenchyme-derived cells only. Other cell lines tested by the adenoviral expression system failed to express odontoblast-phenotypic specific genes. An in vitro mineralized nodule formation assay demonstrated that overexpressed cells could differentiate and form a mineralized matrix. Furthermore, we also demonstrate that phosphorylation of Cbfa1 (osteoblast-specific transcription factor) was not required for the expression of odontoblast-specific genes, indicating the involvement of other unidentified odontoblast-specific transcription factors or coactivators. Cell lines that differentiate into odontoblast-like cells are useful tools for studying the mechanism involved in the terminal differentiation process of these postmitotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported the disruption of the murine gene encoding the transcription factor USF2 and its consequences on glucose-dependent gene regulation in the liver. We report here a peculiar phenotype of Usf2−/− mice that progressively develop multivisceral iron overload; plasma iron overcomes transferrin binding capacity, and nontransferrin-bound iron accumulates in various tissues including pancreas and heart. In contrast, the splenic iron content is strikingly lower in knockout animals than in controls. To identify genes that may account for the abnormalities of iron homeostasis in Usf2−/− mice, we used suppressive subtractive hybridization between livers from Usf2−/− and wild-type mice. We isolated a cDNA encoding a peptide, hepcidin (also referred to as LEAP-1, for liver-expressed antimicrobial peptide), that was very recently purified from human blood ultrafiltrate and from urine as a disulfide-bonded peptide exhibiting antimicrobial activity. Accumulation of iron in the liver has been recently reported to up-regulate hepcidin expression, whereas our data clearly show that a complete defect in hepcidin expression is responsible for progressive tissue iron overload. The striking similarity of the alterations in iron metabolism between HFE knockout mice, a murine model of hereditary hemochromatosis, and the Usf2−/− hepcidin-deficient mice suggests that hepcidin may function in the same regulatory pathway as HFE. We propose that hepcidin acts as a signaling molecule that is required in conjunction with HFE to regulate both intestinal iron absorption and iron storage in macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disulfide bonding pattern of the fourth and fifth epidermal growth factor (EGF)-like domains within the smallest active fragment of thrombomodulin have been determined. In previous work, this fragment was expressed and purified to homogeneity, and its cofactor activity, as measured by Kcat for thrombin activation of protein C, was the same as that for full-length thrombomodulin. CNBr cleavage at the single methionine in the connecting region between the domains and subsequent deglycosylation yielded the individual EGF-like domains. The disulfide bonds were mapped by partial reduction with tris(2-carboxyethyl)phosphine according to the method of Gray [Gray, W. R. (1993) Protein Sci. 2, 1732-1748], which provides unambiguous results. The disulfide bonding pattern of the fourth EGF-like domain was (1-3, 2-4, 5-6), which is the same as that found previously in EGF and in a synthetic version of the fourth EGF-like domain. Surprisingly, the disulfide bonding pattern of the fifth domain was (1-2, 3-4, 5-6), which is unlike that found in EGF or in any other EGF-like domain analyzed so far. This result is in line with an earlier observation that the (1-2, 3-4, 5-6) isomer bound to thrombin more tightly than the EGF-like (1-3, 2-4, 5-6) isomer. The observation that not all EGF-like domains have an EGF-like disulfide bonding pattern reveals an additional element of diversity in the structure of EGF-like domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MEF2 (myocyte-specific enhancer factor 2) is a MADS box transcription factor that is thought to be a key regulator of myogenesis in vertebrates. Mutations in the Drosophila homologue of the mef2 gene indicate that it plays a key role in regulating myogenesis in Drosophila. We show here that the Drosophila tropomyosin I (TmI) gene is a target gene for mef2 regulation. The TmI gene contains a proximal and a distal muscle enhancer within the first intron of the gene. We show that both enhancers contain a MEF2 binding site and that a mutation in the MEF2 binding site of either enhancer significantly reduces reporter gene expression in embryonic, larval, and adult somatic body wall muscles of transgenic flies. We also show that a high level of proximal enhancer-directed reporter gene expression in somatic muscles requires the cooperative activity of MEF2 and a cis-acting muscle activator region located within the enhancer. Thus, mef2 null mutant embryos show a significant reduction but not an elimination of TmI expression in the body wall myoblasts and muscle fibers that are present. Surprisingly, there is little effect in these mutants on TmI expression in developing visceral muscles and dorsal vessel (heart), despite the fact that MEF2 is expressed in these muscles in wild-type embryos, indicating that TmI expression is regulated differently in these muscles. Taken together, our results show that mef2 is a positive regulator of tropomyosin gene transcription that is necessary but not sufficient for high level expression in somatic muscle of the embryo, larva, and adult.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with the M4Eo subtype of acute myeloid leukemia almost invariably are found to have an inversion of chromosome 16 in their leukemic cells, which results in a gene fusion between the transcription factor called core binding factor beta (CBFbeta) on 16q and a smooth muscle myosin heavy chain (SMMHC) gene on 16p. Subcellular localizations of the wild-type CBFbeta and the CBFbeta-SMMHC fusion protein were determined by immunofluorescence of NIH 3T3 cells that overexpress wild-type or fusion protein. Normal CBFbeta showed an unexpected perinuclear pattern consistent with primary localization in the Golgi complex. The CBFbeta-SMMHC fusion protein had a very different pattern. Nuclear staining included rod-like crystalline structures as long as 11 microm. The heterodimeric partner of CBFbeta, CBFalpha, formed part of this complex. Cytoplasmic staining included stress fibers that colocalized with actin, probably as a consequence of the myosin heavy chain component of the fusion protein. Deletion of different regions of the CBFbeta portion of the fusion protein showed that binding to CBFalpha was not required for nuclear translocation. However, deletion of parts of the SMMHC domain of the fusion protein involved in myosin-mediated filament formation resulted in proteins that did not form rod-like structures. These observations confirm previous indirect evidence that the CBFbeta-SMMHC fusion protein is capable of forming macromolecular nuclear aggregates and suggests possible models for the mechanism of leukemic transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-myb protooncogene encodes a highly conserved transcription factor that functions as both an activator and a repressor of transcription. The v-myb oncogenes of E26 leukemia virus and avian myeloblastosis virus encode proteins that are truncated at both the amino and the carboxyl terminus, deleting portions of the c-Myb DNA-binding and negative regulatory domains. This has led to speculation that the deleted regions contain important regulatory sequences. We previously reported that the 42-kDa mitogen-activated protein kinase (p42mapk) phosphorylates chicken and murine c-Myb at multiple sites in the negative regulatory domain in vitro, suggesting that phosphorylation might provide a mechanism to regulate c-Myb function. We now report that three tryptic phosphopeptides derived from in vitro phosphorylated c-Myb comigrate with three tryptic phosphopeptides derived from metabolically labeled c-Myb immunoprecipitated from murine erythroleukemia cells. At least two of these peptides are phosphorylated on serine-528. Replacement of serine-528 with alanine results in a 2- to 7-fold increase in the ability of c-Myb to transactivate a Myb-responsive promoter/reporter gene construct. These findings suggest that phosphorylation serves to regulate c-Myb activity and that loss of this phosphorylation site from the v-Myb proteins may contribute to their transforming potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os microRNAs (miRNAs) são pequenos RNAs endógenos não codantes de 21-24 nucleotídeos (nt) que regulam a expressão gênica de genes-alvos. Eles estão envolvidos em diversos aspectos de desenvolvimento da planta, tanto na parte aérea, quanto no sistema radicular. Entre os miRNAs, o miRNA156 (miR156) regula a família de fatores de transcrição SQUAMOSA Promoter-Binding Protein-Like (SPL) afetando diferentes processos do desenvolvimento vegetal. Estudos recentes mostram que a via gênica miR156/SPL apresenta efeito positivo tanto no aumento da formação de raízes laterais, quanto no aumento de regeneração de brotos in vitro a partir de folhas e hipocótilos em Arabidopsis thaliana. Devido ao fato de que a origem da formação de raiz lateral e a regeneração in vitro de brotos a partir de raiz principal compartilham semelhanças anatômicas e moleculares, avaliou-se no presente estudo se a via miR156/SPL, da mesma forma que a partir de explantes aéreos, também é capaz de influenciar na regeneração de brotos in vitro a partir de explantes radiculares. Para tanto foram comparados taxa de regeneração, padrão de distribuição de auxina e citocinina, análises histológicas e histoquímicas das estruturas regeneradas em plantas com via miR156/SPL alterada, incluindo planta mutante hyl1, na qual a produção desse miRNA é severamente reduzida. Além disso, foi avaliado o padrão de expressão do miR156 e específicos genes SPL durante a regeneração de brotos in vitro a partir da raiz principal de Arabidopsis thaliana. No presente trabalho observou-se que a alteração da via gênica miR156/SPL é capaz de modular a capacidade de regeneração de brotos in vitro a partir de raiz principal de Arabidopsis thaliana e a distribuição de auxina e citocinina presente nas células e tecidos envolvidos no processo de regeneração. Plantas superexpressando o miR156 apresentaram redução no número de brotos regenerados, além de ter o plastochron reduzido quando comparado com plantas controle. Adicionalmente, plantas contento o gene SPL9 resistente à clivagem pelo miR156 (rSPL9) apresentaram severa redução na quantidade de brotos, além de terem o plastochron alongado. Interessantemente, plantas mutantes hyl1-2 e plantas rSPL10 não apresentaram regeneração de brotos ao longo da raiz principal, mas sim intensa formação de raízes laterais e protuberâncias, respectivamente, tendo essa última apresentado indícios de diferenciação celular precoce. Tomados em conjunto os dados sugerem que o miR156 apresenta importante papel no controle do processo de regeneração de brotos in vitro. Entretanto, esse efeito é mais complexo em regeneração in vitro a partir de raízes do que a partir de cotilédones ou hipocótilos.