998 resultados para tissue classification
Resumo:
Remote sensing - the acquisition of information about an object or phenomenon without making physical contact with the object - is applied in a multitude of different areas, ranging from agriculture, forestry, cartography, hydrology, geology, meteorology, aerial traffic control, among many others. Regarding agriculture, an example of application of this information is regarding crop detection, to monitor existing crops easily and help in the region’s strategic planning. In any of these areas, there is always an ongoing search for better methods that allow us to obtain better results. For over forty years, the Landsat program has utilized satellites to collect spectral information from Earth’s surface, creating a historical archive unmatched in quality, detail, coverage, and length. The most recent one was launched on February 11, 2013, having a number of improvements regarding its predecessors. This project aims to compare classification methods in Portugal’s Ribatejo region, specifically regarding crop detection. The state of the art algorithms will be used in this region and their performance will be analyzed.
Resumo:
The purpose of this study was to explore the relationship between the intensity of acid reflux and severity of esophageal tissue damage in a cross-sectional study of patients with gastroesophageal reflux disease (GERD). Seventy-eight patients with were selected in accordance with the strict 24-hour ambulatory esophageal pHmetry (24h-pHM) criteria and distributed into three age groups: Group A: 14 - 24 years of age. Group B: 25 - 54; and Group C: 55 - 64. The 24h-pHM was carried out in accordance with DeMeester standardization, and the Savary-Miller classification for the diagnosis of reflux esophagitis was used. The groups were similar in 24h-pHM parameters (p > 0.05), having above normal values. For the study group as a whole, there was no correlation between age group and intensity of acid reflux, and there was no correlation between intensity of acid reflux and severity of esophageal tissue damage. However, when the same patients were sub-grouped in accordance with the depth of their epithelial injury and then distributed into age groups, there was a significant difference in esophagitis without epithelial discontinuity. Younger patients had less epithelial damage than older patients. Additionally, although there was a significant progression from the least severe to the moderate stages of epithelial damage among the age groups, there was no apparent difference among the age groups in the distribution between the moderate stages and most severe stages. The findings support the conclusion that the protective response of individuals to acid reflux varies widely. Continued aggression by acid reflux appears to lead to the exhaustion of individual mechanisms of epithelial protection in some patients, but not others, regardless of age or duration of the disease. Therefore, the diagnosis and follow-up of GERD should include both measurements of the quantity of refluxed acid and an assessment of the damage to the esophageal epithelium.
Resumo:
INTRODUCTION: Tissue expanders have been of great value in plastic surgery. Tissue expansion was developed for a specific indication; however, within a very short time, the concept of tissue expansion found wide applicability. From 1990 to 1999, 315 expanders in 164 patients were utilized. A retrospective analysis of complications and prognostic factors for complications were done. METHODS: The indications for tissue expansion were burns (50%), trauma (32%), and sequelae of previous surgery (8.8%). The expanders were inserted most frequently in the scalp, trunk and neck. RESULTS: There were 22.2% of complications and the most common were expander exposure (50%), infection (24%) and bad function of the expander (12.8%). The present study revealed an increased rate of minor complications in the group of 0 to 10 years of age and an increased rate of major complications for face and neck expansions compared to trunk expansion. There were no increased complication rates for the other age and anatomic site groups, previous expansion, concomitant expansion and type of expander used. CONCLUSIONS: The outcomes from tissue expansion procedures done in our hospital are similar to those reported in the literature. Tissue expansion is a good and safe technique.
Resumo:
PURPOSE: The recovery of a bone fracture is a process that is not yet fully understood. The literature conflicts on the results obtained by the interposition of foreign tissue inside a damaged bone. The objective of the present study was to ascertain the effect of placing muscle tissue between the stumps of a fractured bone. METHOD: The study was carried out on 10 rabbits divided into 2 groups (n = 5): Group 1-partial fracture of the humerus and interposition of muscle tissue; Group 2-complete fracture of the humerus and interposition of muscle tissue. The fractured limb of all animals was immobilized for 8 weeks. At the end of this time, the rabbits were killed and their operated humeri were carefully removed for roentgenological and histological assessment. RESULTS: All humeri of Group 1 recovered their integrity and normal aspect. However, the healing of the humeri of Group 2 was not perfect. Gross angulation of the bone diaphysis occurred in all animals, and immature trabecular bone, osteochondral tissue, and persistence of muscle tissue substituted normal bone. CONCLUSIONS: Interposed muscle does not affect partial bone fracture healing but causes instability in a complete fracture.
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.
Resumo:
Tissue-to-tissue interfaces are commonly present in all tissues exhibiting structural, biological and chemical gradients serving a wide range of physiological functions. These interfaces are responsible for mediation of load transfer between two adjacent tissues. They are also important structures in sustaining the cellular communications to retain tissueâ s functional integration and homeostasis. [1] All cells have the capacity to sense and respond to physical and chemical stimulus and when cultured in three-dimensional (3D) environments they tend to perform their function better than in two-dimensional (2D) environments. Spatial and temporal 3D gradient hydrogels better resemble the natural environment of cells in mimicking their extracellular matrix. [2] In this study we hypothesize that differential functional properties can be engineered by modulation of macromolecule gradients in a cell seeded threedimensional hydrogel system. Specifically, differential paracrine secretory profiles can be engineered using human Bone Marrow Stem Cells (hBMSCâ s). Hence, the specific objectives of this study are to: assemble the macromolecular gradient hydrogels to evaluate the suitablity for hBMSCâ s encapsulation by cellular viability and biofunctionality by assessing the paracrine secretion of hBMSCâ s over time. The gradient hydrogels solutions were prepared by blend of macromolecules in one solution such as hyaluronic (HA) acid and collagen (Col) at different ratios. The gradient hydrogels were fabricated into cylindrical silicon moulds with higher ratio solutions assembled at the bottom of the mould and adding the two solutions consecutively on top of each other. The labelling of the macromolecules was performed to confirm the gradient through fluorescence microscopy. Additionally, AFM was conducted to assess the gradient hydrogels stiffness. Gradient hydrogels characterization was performed by HA and Col degradation assay, degree of crosslinking and stability. hBMSCâ s at P3 were encapsulated into each batch solution at 106 cells/ml solution and gradient hydrogels were produced as previously described. The hBMSCâ s were observed under confocal microscopy to assess viability by Live/Dead® staining. Cellular behaviour concerning proliferation and matrix deposition was also performed. Secretory cytokine measurement for pro-inflammatory and angiogenesis factors was carried out using ELISA. At genomic level, qPCR was carried out. The 3D gradient hydrogels platform made of different macromolecules showed to be a suitable environment for hBMSCâ s. The hBMSCâ s gradient hydrogels supported high cell survival and exhibited biofunctionality. Besides, the 3D gradient hydrogels demonstrated differentially secretion of pro-inflammatory and angiogenic factors by the encapsulated hBMSCâ s. References: 1. Mikos, AG. et al., Engineering complex tissues. Tissue Engineering 12,3307, 2006 2. Phillips, JE. et al., Proc Natl Acad Sci USA, 26:12170-5, 2008
Resumo:
The thymus is the central organ responsible for the generation of T lymphocytes (1). Various diseases cause the thymus to produce in- sufficient T cells, which can lead to immune-suppression (2). Since T cells are essential for the protection against pathogens, it is crucial to promote de novo differentiation of T cells on diseased individuals. The available clinical solutions are: 1) one protocol involving the transplant of thymic stroma from unrelated children only applicable for athymic children (3); 2) for patients with severe peripheral T cell depletion and reduced thymic activity, the administration of stimu- lating molecules stimulating the activity of the endogenous thymus (4). A scaffold (CellFoam) was suggested to support thymus regen- eration in vivo (5), although this research was discontinued. Herein, we propose an innovative strategy to generate a bioartificial thymus. We use a polycaprolactone nanofiber mesh (PCL-NFM) seeded and cultured with human thymic epithelial cells (hTECs). The cells were obtained from infant thymus collected during pediatric cardio-tho- racic surgeries. We report new data on the isolation and characterization of those cells and their interaction with PCL-NFM, by expanding hTECs into relevant numbers and by optimizing cell seeding methods.
Resumo:
One of the biggest concerns in the Tissue Engineering field is the correct vascularization of engineered constructs. Strategies involving the use of endothelial cells are promising but adequate cell sourcing and neo-vessels stability are enduring challenges. In this work, we propose the hypoxic pre-conditioning of the stromal vascular fraction (SVF) of human adipose tissue to obtain highly angiogenic cell sheets (CS). For that, SVF was isolated after enzymatic dissociation of adipose tissue and cultured until CS formation in normoxic (pO2=21%) and hypoxic (pO2=5%) conditions for 5 and 8 days, in basal medium. Immunocytochemistry against CD31 and CD146 revealed the presence of highly branched capillary-like structures, which were far more complex for hypoxia. ELISA quantification showed increased VEGF and TIMP-1 secretion in hypoxia for 8 days of culture. In a Matrigel assay, the formation of capillary-like structures by endothelial cells was more prominent when cultured in conditioned medium recovered from the cultures in hypoxia. The same conditioned medium increased the migration of adipose stromal cells in a scratch assay, when compared with the medium from normoxia. Histological analysis after implantation of 8 days normoxic- and hypoxic-conditioned SVF CS in a hindlimb ischemia murine model showed improved formation of neo-blood vessels. Furthermore, Laser Doppler results demonstrated that the blood perfusion of the injured limb after 30 days was enhanced for the hypoxic CS group. Overall, these results suggest that SVF CS created under hypoxia can be used as functional vascularization units for tissue engineering and regenerative medicine.
Resumo:
Mesenchymal stem cells (MSCs) are considered to be â â immunologically privileged.â â In a previous work when human adipose tissue-derived stem cells (hASCs) subcutaneously implanted in mice we did not identify an adverse host response1. Recently, it was shown that tissue regeneration could benefit from the polarization of M2 macrophages subpopulations 2. In this study we hypothesised that undifferentiated hASCs and derived osteoblasts and chondrocytes are able to switch murine bone marrow-derived macrophages (mBMMÃ s) into M2 phenotype, aiding tissue regeneration. Murine BMMÃ s were plated in direct contact with undifferentiated and osteo or chondro-differentiated hASCs for 4 h, 10 h, 24 h and 72 h. The cytokine profile was analysed by qRT-PCR and the surface markers were detected by flow cytometry. The direct interaction of both cell types was observed by time lapse microscopy. The results showed that mBMMÃ s polarized after contacting tissue culture polystyrene. This M2 phenotype was maintained along the experiment in direct contact with both undifferentiated and osteo or chondro-differentiated hASCs. This was confirmed by the expression of IL-1, IL-10, IL-4, TNF-a and IFN-g (genetic profile) and surface markers (CD206 + + , CD336 + + , MHC II + and CD86 + + ) detection. These data suggest the potential of hASCs in contemporary xenogenic tissue engineering and regenerative medicine strategies, as well as host immune system modulation in autoimmune diseases.
Resumo:
Cell-based approaches in tissue engineering (TE) have been barely explored for the treatment of tendon and ligament (T/L) tissues, requiring the establishment of a widely available cell source with tenogenic potential. As T/L cells are scarce, stem cells may provide a good alternative. Understanding how resident cells behave in vitro, might be useful for recapitulating the tenogenic potential of stem cells for tendon TE applications. Therefore, we propose to isolate and characterize human T/L-derived cells (hTDCs and hLDCs) and compare their regenerative potential with stem cells from adipose tissue (hASCs) and amniotic fluid (hAFSCs)(1). T/L cells were isolated using different procedures and stem cells isolated as described elsewhere(1). Moreover, T/L cells were stimu- lated into the three mesenchymal lineages, using standard differentia- tion media. Cells were characterized for the typical stem cell markers as well as T/L related markers, namely tenascin-C, collagen I and III, decorin and scleraxis, using different complementary techniques such as real time RT-PCR, immunocytochemistry and flow cytometry. No differences were observed between T/L in gene expression and protein deposition. T/L cells were mostly positive for stem ness markers (CD73/CD90/CD105), and have the potential to differentiate towards osteogenesis, chondrogenesis and adipogenesis, demonstrated by the positive staining for AlizarinRed, SafraninO, ToluidineBlue and OilRed. hASCs and hAFSCs exhibit positive expression of all tenogenic mark- ers, although at lower levels than hTDCs and hLDCs. Nevertheless, stem cells availability is key factor in TE strategies, despite that it’s still required optimization to direct their tenogenic phenotype.
Resumo:
Implantable devices must exhibit mechanical properties similar to native tissues to promote appropriate cellular behavior and regeneration. Herein, we report a new membrane manufacture method based on the synthesis of polyelectrolyte complexes (PECs) that exhibit saloplasticity, i.e. variable physical-chemistry using salt as a plasticizer. This is a Green Chemistry approach, as PECs generate structures that are stabilized solely by reversible electrostatic interactions, avoiding the use of harmful crosslinkers completely. Furthermore, natural polyelectrolytes - chitosan and alginate - were used. Upon mixing them, membranes were obtained by drying the PECs at 37ºC, yielding compact PECs without resorting to organicsolvents. The plasticizing effect of salt after synthesis was shown by measuring tensile mechanical properties, which were lower when samples were immersed in high ionic strength solutions.Salt was also used during membrane synthesis in different quan- tities (0 M, 0.15 M and 0.5 M in NaCl) yielding structures with no significant differences in morphology and degradation (around 15% after 3 months in lysozyme). However, swelling was higher (about 10x) when synthesized in the presence of salt. In vitro cell studies using L929 fibroblasts showed that cells adhered and proliferated preferentially in membranes fabricated in the presence of salt (i.e. the membranes with lower tensile strength). Structures with physical-chemical properties controlled with precision open a path to tissue engineering strategies depending on fine tuning mechanical properties and cellular adhesion simply by changing ionic strength during membrane manufacture
Resumo:
Tendon tissue engineering (TE) requires tailoring scaffolds designs and properties to the anatomical and functional requirements of tendons located in different regions of the body. Cell sourcing is also of utmost importance as tendon cells are scarce. Recently, we have found that it is possible to direct the tenogenic differentiation of Amniotic fluid and Adipose tissue derived stem cells (hAFSCs and hASCs), and also that there are hASCs subpopulations that might be more prone to tenogenic differentiation. Nevertheless, biochemical stimulation may not be enough to develop functional TE substitutes for a tissue that is known to be highly dependent on mechanical loading.
Resumo:
The regeneration of soft biological tissues requires new substitutes that exhibit mechanical properties similar to the native tissue. Herein, thin saloplastic membranes with tunable physical properties are prepared by complexation of chitosan and alginate solutions containing different concentrations of sodium chloride. Polyelectrolyte complexes (PECs) are transferred to flat Petri dishes for compaction into membrane shapes by sedimentation and solvent evaporation. All membranes are resistant to degradation by lysozyme and are stable in solutions with pH values between 1 and 13. Immersing the different membranes in new doping solutions of increasing salt concentrations triggers the typical saloplastic behavior, with a high water absorption and decrease of the rigidity and ultimate tensile strength. The range of such variations is tuned by the sodium chloride amount used in the synthesis: high salt concentrations increase water uptake and tensile moduli, while decreasing the ultimate strength. Cellular assays demonstrate high proliferation rates and viability of L929 fibroblasts seeded onto the most rigid membranes. The results validate the use of saloplastic membranes as soft tissue substitutes for future biomedical applications.
Resumo:
Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.
Resumo:
Staphylococcus epidermidis is a biofilm - forming bacterium and a leading etiological agent of nosocomial infections. The ability to establish biofilms on indwelling medical devices is a key virulence factor for this bacterium. Still, the influence of poly - N - acetyl glucosamine (PNAG), the major component of the extracellular biofilm matrix, in the host immune response has been scarcely studied. Here, t h is influence was assessed in mice challenged i.p. with PNAG - p roducing (WT) and isogenic - mutant lacking PNAG (M10) bacteria grown in biofilm - inducing conditions. Faster bacterial clearance was observed in the mice infected with WT bacteria than in M10 - infected counterparts , which w as accompanied by earlier neutrophil recruitment and higher IL - 6 production. Interestingly, in the WT - infected mice, but not in those infected with M10 , elevated serum IL - 10 was detected . To further study the effe ct of PNAG in the immune response, mice were primed with WT or M10 biofilm bacteria and subsequently infected with WT biofilm - released cells. WT - primed mice presented a higher frequency of splenic IFN - γ + and IL - 17 + CD4 + T cells, and more severe liver patho logy than M10 - primed counterparts. Nevertheless, T reg cells obtained from the WT - primed mice presented a higher suppressive function than those obtained from M10 - primed mice. This effect was abrogated when IL - 10 - deficient mice were similarly primed and infected indicating that PNAG promotes the differentiati on of highly suppressive T reg cells by a mechanism dependent on IL - 10. Altogether, these results provide evidence help ing explain ing the coexistence of inflammation and bacterial persistence often observed in biofilm - originated S. epidermidis infections