896 resultados para tau Proteins
Resumo:
Russell M. Morphew, Hazel A. Wright, E. James LaCourse, Debra J. Woods and Peter M. Brophy (2007). Comparative proteomics of excretory-secretory proteins released by the liver fluke Fasciola hepatica in sheep host bile and during in vitro culture ex host. Molecular and Cellular Proteomics, 6 (6), 963-972. Sponsorship: BBSRC / EU RAE2008
Resumo:
Rab4 is a member of the Rab superfamily of small GTPases. It is localized to the early sorting endosome and plays a role in regulating the transport from this compartment to the recycling and degradative pathways. In order to further our understanding of the role Rab4 plays in endocytosis, a yeast two-hybrid screen was performed to identify putative Rab4 effectors. A constitutively active mutant of Rab4, Rab4Q67L, when used as bait to screen a HeLa cDNA library, identified a novel 80kDa protein that interacted with Rab4-GTP. This protein was called Rab Coupling Protein (RCP). RCP interacts preferentially with the GTP-bound form of Rab4. Subsequent work demonstrated that RCP also interacts with Rab11, and that this interaction is not nucleotide-depenedent. RCP is predominantly membrane-bound and localised to the perinuclear recycling compartment. Expression of a truncation mutant of RCP, that contains the Rab binding domain, in HeLa cells, results in the formation of an extensive tubular network that can be labelled with transferrin. These tubules are derived from the recycling compartment since they are inaccessible to transferrin when the ligand is internalised at 18oC. The truncation mutant-induced morphology can be rescued by overexpression of active Rab11, but not active Rab4. This suggests that RCP functions between Rab4 and Rab11 in the receptor recycling pathway, and may act as a ‘molecular bridge’ between these two sequentially acting small GTPases. Quantitative assays demonstrated that overexpression of the truncation mutant results in a dramatic inhibition in the rate of receptor recycling. Database analysis revealed that RCP belongs to a family of Rab interacting proteins, each characterised by a carboxy-terminal coiled-coil domain and an amino-terminal phospholipid-binding domain. KIAA0941, an RCP homologue, interacts with Rab11, but not with Rab4. Overexpression of its Rab binding domain also results in a tubular network, however, this tubulation cannot be rescued by active Rab11.
Resumo:
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder, accounting for over 60% of all cases of dementia. The primary risk factor for AD is age, however several genetic and environmental factors are also involved. The pathological characteristics of AD include extracellular deposition of the beta-amyloid peptide (Aβ) and intraneuronal accumulation of neurofibrillary tangles (NFTs) made of aggregated paired helical filaments (PHFs) of the hyperphosphorylated tau protein, along with synaptic loss and neuronal death. There are numerous biochemical mechanisms involved in AD pathogenesis, however the reigning hypothesis points to toxic oligomeric Aβ species as the primary causative factor in a cascade of events leading to neuronal stress and dyshomeostasis that initiate abnormal regulation of tau. The insulin and IGF-1 receptors (IR, IGF-1R) are the primary activators of PI3- K/Akt through which they regulate cell growth, development, glucose metabolism, and learning and memory. Work in our lab and others shows increased Akt activity and phosphorylation of its downstream targets in AD brain, along with insulin and insulin-like growth factor-1 signalling (IIS) dysfunction. This is supported by studies of AD models in vivo and in vitro. Our group and others hypothesise that Aβ activates Akt through IIS to initiate a negative feedback mechanism that desensitises neurons to insulin/IGF-1, and sustains activation of Akt. In this study the functions of endogenous Akt, IR, and the insulin receptor substrate (IRS-1) were examined in relationship to Aβ and tau pathology in the 3xTg-AD mouse model, which contains three mutant human transgenes associated with familial AD or dementia. The 3xTg-AD mouse develops Aβ and tau pathology in a spatiotemporal manner that best recapitulates the progression of AD in human brain. Western blotting and immunofluorescent microscopy techniques were utilised in vivo and in vitro, to examine the relationship between IIS, Akt, and AD pathology. I first characterised in detail AD pathology in 3xTg-AD mice, where an age-related accumulation of intraneuronal Aβ and tau was observed in the hippocampal formation, amygdala, and entorhinal cortex, and at late stages (18 months), extracellular amyloid plaques and NFTs, primarily in the subiculum and the CA1 layer of the hippocampal formation. Increased activity of Akt, detected with antibody to phosphoSer473-Akt, was increased in 3xTg-AD mice compared to age-matched non-transgenic mice (non-Tg), and in direct correlation to the accumulation of Aβ and tau in neuronal somatodendritic compartments. Akt phosphorylates tau at residue Ser214 within a highly specific consensus sequence for Akt phosphorylation, and phosphoSer214-tau strongly decreases microtubule (MT) stabilisation by preventing tau-MT binding. PhosphoSer214-tau increased concomitantly with this in the same age-related and region-specific fashion. Polarisation of tau phosphorylation was observed, where PHF-1 (tauSer396/404) and phosphoSer214-tau both appeared early in 3xTg-AD mice in distinct neuronal compartments: PHF-1 in axons, and phosphoSer214-tau in neuronal soma and dendrites. At 18 months, phosphoSer214-tau strongly colocalised with NFTs positive for the PHF- 1 and AT8 (tauSer202/Thr205) phosphoepitopes. IR was decreased with age in 3xTg-AD brain and in comparison to age-matched non-Tg, and this was specific for brain regions containing Aβ, tau, and hyperactive Akt. IRS-1 was similarly decreased, and both proteins showed altered subcellular distribution. Phosphorylation of IRS-1Ser312 is a strong indicator of IIS dysfunction and insulin resistance, and was increased in 3xTg-AD mice with age and in relation to pathology. Of particular note was our observation that abberant IIS and Akt signalling in 3xTg-AD brain related to Aβ and tau pathology on a gross anatomical level, and specifically localised to the brain regions and circuitry of the perforant path. Finally, I conducted a preliminary study of the effects of synthetic Aβ oligomers on embryonic rat hippocampus neuronal cultures to support these results and those in the literature. Taken together, these novel findings provide evidence for IIS and Akt signal transduction dysfunction as the missing link between Aβ and tau pathogenesis, and contribute to the overall understanding of the biochemical mechanisms of AD.
Resumo:
HFE is a transmembrane protein that becomes N-glycosylated during transport to the cell membrane. It acts to regulate cellular iron uptake by interacting with the Type 1 transferrin receptor and interfering with its ability to bind iron-loaded transferrin. There is also evidence that HFE regulates systemic iron levels by binding to the Type II transferrin receptor although the mechanism by which this occurs is still not well understood. Mutations to HFE that disrupt this function, or physiological conditions that decrease HFE protein levels, are associated with increased iron uptake, and its accumulation in tissues and organs. This is exemplified by the point mutation that results in conversion of cysteine residue 282 to tyrosine (C282Y), and gives rise to the majority of HFE-related hemochromatoses. The C282Y mutation prevents the formation of a disulfide bridge and disrupts the interaction with its co-chaperone β2-microglobulin. The resulting misfolded protein is retained within the endoplasmic reticulum (ER) where it activates the Unfolded Protein Response (UPR) and is subjected to proteasomal degradation. The absence of functional HFE at the cell surface leads to unregulated iron uptake and iron loading. While the E3 ubiquitin ligase involved in the degradation of HFE-C282Y has been identified, the mechanism by which it is targeted for degradation remains relatively obscure. The primary objective of this project was to further our understanding of how the iron regulatory HFE protein is targeted for degradation. Our studies suggest that the glycosylation status, and the active process of deglycosylation, are central to this process. We identified a number of additional factors that can contribute towards degradation and explored their regulation during ER stress conditions.
Resumo:
This report describes the identification of a novel protein named PS1D (Genbank accession number ), which is composed of an S1-like RNA-binding domain, a (cysteine)x3-(histidine) CCCH-zinc finger, and a very basic carboxyl domain. PS1D is expressed as two isoforms, probably resulting from the alternative splicing of mRNA. The long PS1D isoform differs from the short one by the presence of 48 additional amino acids at its amino-terminal extremity. Analysis of PS1D subcellular distribution by cell fractionation reveals that this protein belongs to the core of the eukaryotic 60S ribosomal subunit. Interestingly, PS1D protein is a highly conserved protein among mammalians as murine, human, and simian PS1D homologues share more than 95% identity. In contrast, no homologous protein is found in lower eukaryotes such as yeast and Caenorhabditis elegans. These observations indicate that PS1D is the first eukaryotic ribosomal protein that is specific to higher eukaryotes.
Resumo:
BACKGROUND: Breast cancer is a heterogeneous disease. Predictive biological markers (BM) of responsiveness to therapy need to be identified. Evaluation of BM is mainly done at the primary site. However, in the adjuvant therapy of breast cancer, the main goal is control of micrometastases. It is still unknown whether heterogeneity in the expression of BM between the primary site and its micrometastases exists. OBJECTIVE: To evaluate the expression of some BM with potential predictive value from the primary breast cancer site and metastatic ipsilateral axillary lymph nodes. PATIENTS AND METHODS: Focality (percentage of positive cells) and intensity staining scores were evaluated for each marker. Freshly cut sections (4 microm) from embedded blocks of breast cancer fixed in formalin or bouin were put onto superfrost slides (Menzel-Gläser). Protein expression was evaluated immunohistochemically (IHC) using monoclonal antibodies against: topo II-alpha (clone KiS1, 1 microg/ml, Roche) with a trypsine pre-treatment (P); HSP27 (clone G3.1, 1/60, Biogenex), HSP70 (clone BRM.22, 1/80, Biogenex) and HER2 (clone CB11, 1/40, Novocastra; without P); p53 (clone D07, 1/750, Dako) and bcl-2 (clone 124, 1/60, Dako) with citrate buffer as P. RESULTS: Overall, the percentage of discordant marker status in the primary tumour and its metastatic lymph nodes was 2% for HER2, 6% for p53, 15% for bcl-2, 19% for topoisomerase II-alpha, 24% for HSP27 and 30% for HSP70. For the subgroup of patients with positive BM in the primary tumour, the percentage of discordance was 6% for HER2, 7% for p53, 14% for bcl-2, 19% for HSP70, 21% for topoisomerase II-alpha and 36% for HSP27. For the subgroup of patients with positive BM in the lymph nodes, the percentage of discordance was 9% for bcl-2, 15% for HER2 and p53, 21% for topoisomerase II-alpha, 22% for HSP27 and 25% for HSP70. CONCLUSIONS: 1) No biological marker had 100% concordant results. 2) Although some discordant cases might be explained by the limitations of the IHC technique, future studies aiming to evaluate the predictive value of BM in the adjuvant therapy of breast cancer should take into account a possible difference in BM expression between the primary and the metastatic sites.
Resumo:
info:eu-repo/semantics/published
Resumo:
Several lines of evidence point strongly toward the importance of highly alpha-helical intermediates in the folding of all globular proteins, regardless of their native structure. However, experimental refolding studies demonstrate no observable alpha-helical intermediate during refolding of some beta-sheet proteins and have dampened enthusiasm for this model of protein folding. In this study, beta-sheet proteins were hypothesized to have potential to form amphiphilic helices at a period of <3.6 residues/turn that matches or exceeds the potential at 3.6 residues/turn. Hypothetically, such potential is the basis for an effective and unidirectional mechanism by which highly alpha-helical intermediates might be rapidly disassembled during folding and potentially accounts for the difficulty in detecting highly alpha-helical intermediates during the folding of some proteins. The presence of this potential was confirmed, indicating that a model entailing ubiquitous formation of alpha-helical intermediates during the folding of globular proteins predicts previously unrecognized features of primary structure. Further, the folding of fatty acid binding protein, a predominantly beta-sheet protein that exhibits no apparent highly alpha-helical intermediate during folding, was dramatically accelerated by 2,2,2-trifluoroethanol, a solvent that stabilizes alpha-helical structure. This observation suggests that formation of an alpha-helix can be a rate-limiting step during folding of a predominantly beta-sheet protein and further supports the role of highly alpha-helical intermediates in the folding of all globular proteins.
Resumo:
The BUZ/Znf-UBP domain is a protein module found in the cytoplasmic deacetylase HDAC6, E3 ubiquitin ligase BRAP2/IMP, and a subfamily of ubiquitin-specific proteases. Although several BUZ domains have been shown to bind ubiquitin with high affinity by recognizing its C-terminal sequence (RLRGG-COOH), it is currently unknown whether the interaction is sequence-specific or whether the BUZ domains are capable of binding to proteins other than ubiquitin. In this work, the BUZ domains of HDAC6 and Ubp-M were subjected to screening against a one-bead-one-compound (OBOC) peptide library that exhibited random peptide sequences with free C-termini. Sequence analysis of the selected binding peptides as well as alanine scanning studies revealed that the BUZ domains require a C-terminal Gly-Gly motif for binding. At the more N-terminal positions, the two BUZ domains have distinct sequence specificities, allowing them to bind to different peptides and/or proteins. A database search of the human proteome on the basis of the BUZ domain specificities identified 11 and 24 potential partner proteins for Ubp-M and HDAC6 BUZ domains, respectively. Peptides corresponding to the C-terminal sequences of four of the predicted binding partners (FBXO11, histone H4, PTOV1, and FAT10) were synthesized and tested for binding to the BUZ domains by fluorescence polarization. All four peptides bound to the HDAC6 BUZ domain with low micromolar K(D) values and less tightly to the Ubp-M BUZ domain. Finally, in vitro pull-down assays showed that the Ubp-M BUZ domain was capable of binding to the histone H3-histone H4 tetramer protein complex. Our results suggest that BUZ domains are sequence-specific protein-binding modules, with each BUZ domain potentially binding to a different subset of proteins.
Resumo:
Bacterial cell-wall-associated fibronectin binding proteins A and B (FnBPA and FnBPB) form bonds with host fibronectin. This binding reaction is often the initial step in prosthetic device infections. Atomic force microscopy was used to evaluate binding interactions between a fibronectin-coated probe and laboratory-derived Staphylococcus aureus that are (i) defective in both FnBPA and FnBPB (fnbA fnbB double mutant, DU5883), (ii) capable of expressing only FnBPA (fnbA fnbB double mutant complemented with pFNBA4), or (iii) capable of expressing only FnBPB (fnbA fnbB double mutant complemented with pFNBB4). These experiments were repeated using Lactococcus lactis constructs expressing fnbA and fnbB genes from S. aureus. A distinct force signature was observed for those bacteria that expressed FnBPA or FnBPB. Analysis of this force signature with the biomechanical wormlike chain model suggests that parallel bonds form between fibronectin and FnBPs on a bacterium. The strength and covalence of bonds were evaluated via nonlinear regression of force profiles. Binding events were more frequent (p < 0.01) for S. aureus expressing FnBPA or FnBPB than for the S. aureus double mutant. The binding force, frequency, and profile were similar between the FnBPA and FnBPB expressing strains of S. aureus. The absence of both FnBPs from the surface of S. aureus removed its ability to form a detectable bond with fibronectin. By contrast, ectopic expression of FnBPA or FnBPB on the surface of L. lactis conferred fibronectin binding characteristics similar to those of S. aureus. These measurements demonstrate that fibronectin-binding adhesins FnBPA and FnBPB are necessary and sufficient for the binding of S. aureus to prosthetic devices that are coated with host fibronectin.
Resumo:
Wg/Wnt signals specify cell fates in both invertebrate and vertebrate embryos and maintain stem-cell populations in many adult tissues. Deregulation of the Wnt pathway can transform cells to a proliferative fate, leading to cancer. We have discovered that two Drosophila proteins that are crucial for cytokinesis have a second, largely independent, role in restricting activity of the Wnt pathway. The fly homolog of RacGAP1, Tumbleweed (Tum)/RacGAP50C, and its binding partner, the kinesin-like protein Pavarotti (Pav), negatively regulate Wnt activity in fly embryos and in cultured mammalian cells. Unlike many known regulators of the Wnt pathway, these molecules do not affect stabilization of Arm/beta-catenin (betacat), the principal effector molecule in Wnt signal transduction. Rather, they appear to act downstream of betacat stabilization to control target-gene transcription. Both Tum and Pav accumulate in the nuclei of interphase cells, a location that is spatially distinct from their cleavage-furrow localization during cytokinesis. We show that this nuclear localization is essential for their role in Wnt regulation. Thus, we have identified two modulators of the Wnt pathway that have shared functions in cell division, which hints at a possible link between cytokinesis and Wnt activity during tumorigenesis.
Resumo:
BACKGROUND: Previous clinical efficacy trials failed to support the continued development of recombinant gp120 (rgp120) as a candidate HIV vaccine. However, the recent RV144 HIV vaccine trial in Thailand showed that a prime/boost immunization strategy involving priming with canarypox vCP1521 followed by boosting with rgp120 could provide significant, although modest, protection from HIV infection. Based on these results, there is renewed interest in the development of rgp120 based antigens for follow up vaccine trials, where this immunization approach can be applied to other cohorts at high risk for HIV infection. Of particular interest are cohorts in Africa, India, and China that are infected with clade C viruses. METHODOLOGY/PRINCIPAL FINDINGS: A panel of 10 clade C rgp120 envelope proteins was expressed in 293 cells, purified by immunoaffinity chromatography, and used to immunize guinea pigs. The resulting sera were collected and analyzed in checkerboard experiments for rgp120 binding, V3 peptide binding, and CD4 blocking activity. Virus neutralization studies were carried out with two different assays and two different panels of clade C viruses. A high degree of cross reactivity against clade C and clade B viruses and viral proteins was observed. Most, but not all of the immunogens tested elicited antibodies that neutralized tier 1 clade B viruses, and some sera neutralized multiple clade C viruses. Immunization with rgp120 from the CN97001 strain of HIV appeared to elicit higher cross neutralizing antibody titers than the other antigens tested. CONCLUSIONS/SIGNIFICANCE: While all of the clade C antigens tested were immunogenic, some were more effective than others in eliciting virus neutralizing antibodies. Neutralization titers did not correlate with rgp120 binding, V3 peptide binding, or CD4 blocking activity. CN97001 rgp120 elicited the highest level of neutralizing antibodies, and should be considered for further HIV vaccine development studies.
Resumo:
-Transgenic mouse models have been developed to manipulate beta-adrenergic receptor (betaAR) signal transduction. Although several of these models have altered betaAR subtypes, the specific functional sequelae of betaAR stimulation in murine heart, particularly those of beta2-adrenergic receptor (beta2AR) stimulation, have not been characterized. In the present study, we investigated effects of beta2AR stimulation on contraction, [Ca2+]i transient, and L-type Ca2+ currents (ICa) in single ventricular myocytes isolated from transgenic mice overexpressing human beta2AR (TG4 mice) and wild-type (WT) littermates. Baseline contractility of TG4 heart cells was increased by 3-fold relative to WT controls as a result of the presence of spontaneous beta2AR activation. In contrast, beta2AR stimulation by zinterol or isoproterenol plus a selective beta1-adrenergic receptor (beta1AR) antagonist CGP 20712A failed to enhance the contractility in TG4 myocytes, and more surprisingly, beta2AR stimulation was also ineffective in increasing contractility in WT myocytes. Pertussis toxin (PTX) treatment fully rescued the ICa, [Ca2+]i, and contractile responses to beta2AR agonists in both WT and TG4 cells. The PTX-rescued murine cardiac beta2AR response is mediated by cAMP-dependent mechanisms, because it was totally blocked by the inhibitory cAMP analog Rp-cAMPS. These results suggest that PTX-sensitive G proteins are responsible for the unresponsiveness of mouse heart to agonist-induced beta2AR stimulation. This was further corroborated by an increased incorporation of the photoreactive GTP analog [gamma-32P]GTP azidoanilide into alpha subunits of Gi2 and Gi3 after beta2AR stimulation by zinterol or isoproterenol plus the beta1AR blocker CGP 20712A. This effect to activate Gi proteins was abolished by a selective beta2AR blocker ICI 118,551 or by PTX treatment. Thus, we conclude that (1) beta2ARs in murine cardiac myocytes couple to concurrent Gs and Gi signaling, resulting in null inotropic response, unless the Gi signaling is inhibited; (2) as a special case, the lack of cardiac contractile response to beta2AR agonists in TG4 mice is not due to a saturation of cell contractility or of the cAMP signaling cascade but rather to an activation of beta2AR-coupled Gi proteins; and (3) spontaneous beta2AR activation may differ from agonist-stimulated beta2AR signaling.
Resumo:
The actions of many hormones and neurotransmitters are mediated through stimulation of G protein-coupled receptors. A primary mechanism by which these receptors exert effects inside the cell is by association with heterotrimeric G proteins, which can activate a wide variety of cellular enzymes and ion channels. G protein-coupled receptors can also interact with a number of cytoplasmic scaffold proteins, which can link the receptors to various signaling intermediates and intracellular effectors. The multicomponent nature of G protein-coupled receptor signaling pathways makes them ideally suited for regulation by scaffold proteins. This review focuses on several specific examples of G protein-coupled receptor-associated scaffolds and the roles they may play in organizing receptor-initiated signaling pathways in the cardiovascular system and other tissues.
Resumo:
To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.