986 resultados para sustainable schools
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
OBJECTIVE: To assess the prevalence of and the factors related to overweight and obesity in a sample of children from the region of Sintra, Portugal. METHODS AND PROCEDURES: Cross-sectional study, stratified for freguesia with random selection of schools. Height, weight, triceps skinfold, upper arm and waist circumferences were measured, and overweight/obesity defined according to international criteria. Breast-feeding, number of daily meals and parents' height and weight data were also collected. RESULTS: One thousand two hundred and twenty-five children aged 6-10 years were assessed. Overall prevalence of overweight and obesity was 35.6% (23% overweight and 12.6% obesity). Overweight or obese children had higher triceps skinfold, upper arm circumference, arm muscle area, and waist circumference than their normal weight counterparts (P < 0.001). On multivariate analysis, relatively to a child without obese progenitors, a child with one obese progenitor had an obesity risk multiplied by 2.78 (95% confidence interval (CI): 1.76-4.38), while a child with two obese progenitors had a risk multiplied by 6.47 (95% CI: 5.59-16.19). Conversely, being picky was significantly related with a smaller risk of obesity: for boys, odds ratio (OR) = 0.15 (95% CI: 0.04-0.63); for girls, OR = 0.19 (95% CI: 0.06-0.64). Finally, no relationships were found between obesity, birth weight, birth height or breast-feeding. DISCUSSION: Prevalence of overweight and obesity are elevated among children of the Sintra region in Portugal compared to most other regions of Europe. The relationship with the parents' nutritional state stresses the need to target families for preventing obesity.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
The path: sustainable development in conjunction with meeting the demands of a changing environment.
Resumo:
In the context of severe economic recession, the Library is compelled to adapt to this changing environment, in order to meet the requirements and demands of users with very specific needs. Taking the pillars of sustainable development as a reference point, and extrapolating them to our domain, we establish the next main goals
Resumo:
Audit report on the Northeast Iowa Schools Insurance Trust for the year ended June 30, 2014
Resumo:
Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.