956 resultados para structure-induced equilibrium
Resumo:
We characterized changes in the visual behavior of mice in which a loss of the retinal pigment epithelium (RPE) was experimentally induced with intravenous (i.v.) administration of sodium iodate (NaIO3). We compared and correlated these changes with alterations in neural retinal structure and function. RPE loss was induced in 4-6 week old male C57BL/6 mice with an i.v. injection of 1% NaIO3 at three concentrations: 35, 50, or 70 mg/kg. At 1, 3, 7, 14, 21, and 28 days (d) as well as 6 months post injection (PI) a behavioral test was performed in previously trained mice to evaluate visual function. Eye morphology was then assessed for changes in both the RPE and neural retina. NaIO3-induced RPE degeneration was both dose and PI time dependent. Our low dose showed no effects, while our high dose caused the most damage, as did longer PI times at our intermediate dose. Using the intermediate dose, no changes were detectable in either visual behavior or retinal morphology at 1 d PI. However, at 3 d PI visual behavior became abnormal and patchy RPE cell loss was observed. From 7 d PI onward, changes in retinal morphology and visual behavior became more severe. At 6 months PI, no recovery was seen in any of these measures in mice administered the intermediate dose. These results show that NaIO3 dosage and/or time PI can be varied to produce different, yet permanent deficits in retinal morphology and visual function. Thus, this approach should provide a unique system in which the onset and severity of RPE damage, and its consequences can be manipulated. As such, it should be useful in the assessment of rescue or mitigating effects of retinal or stem cell transplantation on visual function.
Resumo:
Simple collagen-related peptides (CRPs) containing a repeat Gly-Pro-Hyp sequence are highly potent platelet agonists. Like collagen, they must exhibit tertiary (triple-helical) and quaternary (polymeric) structure to activate platelets. Platelet signaling events induced by the peptides are the same as most of those induced by collagen. The peptides do not recognize the alpha 2 beta 1 integrin. To identify the signaling receptor involved, we have evaluated the response to the CRP, Gly-Lys-Hyp(Gly-Pro-Hyp)10-Gly-Lys-Hyp-Gly of platelets with defined functional deficiencies. These studies exclude a primary recognition role for CD36, von Willebrand factor (vWF), or glycoprotein (GP) IIb/IIIa. Thus, both CD36 and vWF-deficient platelets exhibited normal aggregation, normal fibrinogen binding, and normal expression of CD62 and CD63, measured by flow cytometry, in response to the peptide, and there was normal expression of CD62 and CD63 on thrombasthenic platelets. In contrast, GPVI-deficient platelets were totally unresponsive to the peptide, indicating that this receptor recognizes the Gly-Pro-Hyp sequence in collagen. GPVI-deficient platelets showed some fibrinogen binding in response to collagen but failed to aggregate and to express CD62 and CD63. Collagen, but not CRP-XL, contains binding sites for alpha 2 beta 1. Therefore, it is possible that collagen still induces some signaling via alpha 2 beta 1, leading to activation of GPIIb/IIIa. Our findings are consistent with a two-site, two-step model of collagen interaction with platelets involving recognition of specific sequences in collagen by an adhesive receptor such as alpha 2 beta 1 to arrest platelets under flow and subsequent recognition of another specific collagen sequence by an activatory receptor, namely GPVI.
Resumo:
Drug-induced respiratory depression is a common side effect of the agents used in anesthesia practice to provide analgesia and sedation. Depression of the ventilatory drive in the spontaneously breathing patient can lead to severe cardiorespiratory events and it is considered a primary cause of morbidity. Reliable predictions of respiratory inhibition in the clinical setting would therefore provide a valuable means to improve the safety of drug delivery. Although multiple studies investigated the regulation of breathing in man both in the presence and absence of ventilatory depressant drugs, a unified description of respiratory pharmacodynamics is not available. This study proposes a mathematical model of human metabolism and cardiorespiratory regulation integrating several isolated physiological and pharmacological aspects of acute drug-induced ventilatory depression into a single theoretical framework. The description of respiratory regulation has a parsimonious yet comprehensive structure with substantial predictive capability. Simulations relative to the synergistic interaction of the hypercarbic and hypoxic respiratory drive and the global effect of drugs on the control of breathing are in good agreement with published experimental data. Besides providing clinically relevant predictions of respiratory depression, the model can also serve as a test bed to investigate issues of drug tolerability and dose finding/control under non-steady-state conditions.
Resumo:
Paclitaxel (Taxol) has been successfully combined with the monoclonal antibody trastuzumab (Herceptin) in the treatment of ErbB2 overexpressing cancers. However, this combination therapy showed an unexpected synergistic increase in cardiac dysfunction. We have studied the mechanisms of paclitaxel/anti-ErbB2 cardiotoxicity in adult rat ventricular myocytes (ARVM). Myofibrillar organization was assessed by immunofluorescence microscopy and cell viability was tested by the TUNEL-, LDH- and MTT-assay. Oxidative stress was measured by DCF-fluorescence and myocyte contractile function by video edge-detection and fura-2 fluorescence. Treatment of ARVM with paclitaxel or antibodies to ErbB2 caused a significant increase in myofilament degradation, similarly as observed with an inhibitor of MAPK-signaling, but not apoptosis, necrosis or changes in mitochondrial activity. Paclitaxel-treatment and anti-ErbB2 reduced Erk1/2 phosphorylation. Paclitaxel increased diastolic calcium, shortened relaxation time and reduced fractional shortening in combination with anti-ErbB2. A minor increase in oxidative stress by paclitaxel or anti-ErbB2 was found. We conclude, that concomitant inhibition of ErbB2 receptors and paclitaxel treatment has an additive worsening effect on adult cardiomyocytes, mainly discernible in changes of myofibrillar structure and function, but in the absence of cell death. A potential mechanism is the modulation of the MAPK/Erk1/2 signaling by both drugs.
Resumo:
The ability of anesthetic agents to provide adequate analgesia and sedation is limited by the ventilatory depression associated with overdosing in spontaneously breathing patients. Therefore, quantitation of drug induced ventilatory depression is a pharmacokinetic-pharmacodynamic problem relevant to the practice of anesthesia. Although several studies describe the effect of respiratory depressant drugs on isolated endpoints, an integrated description of drug induced respiratory depression with parameters identifiable from clinically available data is not available. This study proposes a physiological model of CO2 disposition, ventilatory regulation, and the effects of anesthetic agents on the control of breathing. The predictive performance of the model is evaluated through simulations aimed at reproducing experimental observations of drug induced hypercarbia and hypoventilation associated with intravenous administration of a fast-onset, highly potent anesthetic mu agonist (including previously unpublished experimental data determined after administration of 1 mg alfentanil bolus). The proposed model structure has substantial descriptive capability and can provide clinically relevant predictions of respiratory inhibition in the non-steady-state to enhance safety of drug delivery in the anesthetic practice.
Resumo:
The Pacaya volcanic complex is part of the Central American volcanic arc, which is associated with the subduction of the Cocos tectonic plate under the Caribbean plate. Located 30 km south of Guatemala City, Pacaya is situated on the southern rim of the Amatitlan Caldera. It is the largest post-caldera volcano, and has been one of Central America’s most active volcanoes over the last 500 years. Between 400 and 2000 years B.P, the Pacaya volcano had experienced a huge collapse, which resulted in the formation of horseshoe-shaped scarp that is still visible. In the recent years, several smaller collapses have been associated with the activity of the volcano (in 1961 and 2010) affecting its northwestern flanks, which are likely to be induced by the local and regional stress changes. The similar orientation of dry and volcanic fissures and the distribution of new vents would likely explain the reactivation of the pre-existing stress configuration responsible for the old-collapse. This paper presents the first stability analysis of the Pacaya volcanic flank. The inputs for the geological and geotechnical models were defined based on the stratigraphical, lithological, structural data, and material properties obtained from field survey and lab tests. According to the mechanical characteristics, three lithotechnical units were defined: Lava, Lava-Breccia and Breccia-Lava. The Hoek and Brown’s failure criterion was applied for each lithotechnical unit and the rock mass friction angle, apparent cohesion, and strength and deformation characteristics were computed in a specified stress range. Further, the stability of the volcano was evaluated by two-dimensional analysis performed by Limit Equilibrium (LEM, ROCSCIENCE) and Finite Element Method (FEM, PHASE 2 7.0). The stability analysis mainly focused on the modern Pacaya volcano built inside the collapse amphitheatre of “Old Pacaya”. The volcanic instability was assessed based on the variability of safety factor using deterministic, sensitivity, and probabilistic analysis considering the gravitational instability and the effects of external forces such as magma pressure and seismicity as potential triggering mechanisms of lateral collapse. The preliminary results from the analysis provide two insights: first, the least stable sector is on the south-western flank of the volcano; second, the lowest safety factor value suggests that the edifice is stable under gravity alone, and the external triggering mechanism can represent a likely destabilizing factor.
Resumo:
Metal-organic frameworks (MOFs) obtained much attention because of their unusual structures and properties as well as their potential applications. This dissertation research was focused on (1) the effects of synthesis conditions on the structures of MOFs, (2) the thermal stability of MOFs, (3) pressure-induced amorphization, and (4) the effect of high-valent ions on the structure of a MOF. This research demonstrated that the crystal structure of MOF-5 could be controlled by drying solvents. If the vacuum solvent is dimethylformamide (DMF), the crystal structure of MOF-5 is tetragonal. In contrast, if the DMF is displaced by CH2Cl2 before the vacuum, the obtained MOF-5 occupies a cubic structure. Furthermore, it was found that the tetragonal MOF-5 exhibited a mediate surface area (300-1000 m2/g). The surface area of tetragonal MOF-5 is also dependent on Zn(NO3)2/H2BDC (H2BDC: terephthalic acid) molar ratios used for its synthesis. The optimum ratio is 1.38, at which synthesized tetragonal MOF-5 exhibits the highest crystallinity and surface area (1297 m2/g). The thermal stability and decomposition of MOF-5 were systematically investigated. The thermal decomposition of cubic and tetragonal MOF-5s resulted in the same products: CO2, benzene, amorphous carbon, and crystal ZnO. The thermal decomposition is due to breaking carboxylic bridges between benzene rings and Zn4O clusters. Identifying structural relationships between crystalline and noncrystalline states is of fundamental interest in materials research. Currently, amorphization of solid materials at ambient temperature requires an ultra-high pressure (several GPa). However, this research demonstrated that MOF-5 and IRMOF-8 can be irreversibly amorphized at ambient temperature by employing a low compressing pressure of 3.5 MPa, which is 100 times lower than that required for amorphization of other solids. Furthermore, the pressure-induced amorphization (PIA) of MOFs is strongly dependent on the changeability of bond angles. If the geometric structure of a MOF can allow bond angles to be changed without breaking bonds, it can easily be amorphized by compression. This can explain why MOF-5 and IRMOF-8 can easily be amorphized via compression than Cu-BTC. It is generally recognized that zeolitic imidazolate frameworks (ZIFs) occupy much higher stability than other types of MOFs. The representative of ZIFs is Zn(2-methylimidazole)2 (ZIF-8) exhibiting high-decomposition temperature and high chemical resistance to various solvents. However, so far, it is still unknown whether the high stability of ZIF-8 can be challenged by ions, which is important for its modification by doping ions. In this research, we performed aqueous salt solution treatment on ZIF-8, and the results showed that anions (Cl¯ and NO3¯) in a solution exhibited no effect on the crystal structure of ZIF-8. However, the effect of cations (in a solution) on structure of ZIF-8 strongly depends on the cation valences. The univalent metal cations showed no effect on the structure of ZIF-8, whereas the bivalent or higher-valent metal cations caused the collapse of ZIF-8 crystal structure. Therefore, structure stability of ZIF-8 is considered when it is subjected to the application, in which high-valent metal cations are involved.
Resumo:
Tax planners often choose debt over equity financing. As this has led to increased corporate debt financing, many countries have introduced thin capitalization rules to secure their tax revenues. In a general capital structure model we analyze if thin capitalization rules affect dividend and financing decisions, and whether they can partially explain why corporations receive both debt and equity capital. We model the Belgian, German and Italian rules as examples. We find that the so-called Miller equilibrium and definite financing effects depend significantly on the underlying tax system. Further, our results are useful for the treasury to decide what thin capitalization type to implement.
Resumo:
Temperature dependent single-crystal X-ray data were collected on amicite K4Na4(Al8Si8O32)·11H2O from Kola Peninsula (Russia) in steps of 25 °C from room temperature to 175 °C and of 50 °C up to 425 °C. At room temperature amicite has space group I2 with a = 10.2112(1), b = 10.4154(1), c = 9.8802(1) Å, β = 88.458(1)°, V = 1050.416(18) Å3. Its crystal structure is based on a Si–Al ordered tetrahedral framework of the GIS type with two systems of eight-membered channels running along the a and c axes. Extraframework K and Na cations are ordered at two fully occupied sites. Above 75 °C amicite was found to partly dehydrate into two separate but coherently intergrown phases, both of space group I2/a, one K-rich ∼K8(Al8Si8O32) ·4H2O (at 75 °C: a = 10.038(2), b = 9.6805(19), c = 9.843(2) Å, β = 89.93(3)°, V = 956.5(3) Å3) and the other Na-rich ∼Na8(Al8Si8O32)·2H2O (at 75 °C: a = 9.759(2), b = 8.9078(18), c = 9.5270(19) Å, β = 89.98(3)°, V = 828.2(3) Å3). Upon further heating above 75 °C the Na- and K-phases lost remaining H2O with only minor influence on the framework structure and became anhydrous at 175 °C and 375 °C, respectively. The two anhydrous phases persisted up to 425 °C. Backscattered electron images of a heated crystal displayed lamellar intergrowth of the K- and Na-rich phases. Exposed to ambient humid conditions K- and Na-rich phases rehydrated and conjoined to the original one phase I2 structure.
Resumo:
Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.
Resumo:
Aldosterone plays a major role in the regulation of salt balance and the pathophysiology of cardiovascular and renal diseases. Many aldosterone-regulated genes--including that encoding the epithelial Na+ channel (ENaC), a key arbiter of Na+ transport in the kidney and other epithelia--have been identified, but the mechanisms by which the hormone modifies chromatin structure and thus transcription remain unknown. We previously described the basal repression of ENaCalpha by a complex containing the histone H3 Lys79 methyltransferase disruptor of telomeric silencing alternative splice variant a (Dot1a) and the putative transcription factor ALL1-fused gene from chromosome 9 (Af9) as well as the release of this repression by aldosterone treatment. Here we provide evidence from renal collecting duct cells and serum- and glucocorticoid-induced kinase-1 (Sgk1) WT and knockout mice that Sgk1 phosphorylated Af9, thereby impairing the Dot1a-Af9 interaction and leading to targeted histone H3 Lys79 hypomethylation at the ENaCalpha promoter and derepression of ENaCalpha transcription. Thus, Af9 is a physiologic target of Sgk1, and Sgk1 negatively regulates the Dot1a-Af9 repressor complex that controls transcription of ENaCalpha and likely other aldosterone-induced genes.
Resumo:
UPTAKE AND METABOLISM OF 5’-AMP IN THE ERYTHROCYTE PLAY KEY ROLES IN THE 5’-AMP INDUCED MODEL OF DEEP HYPOMETABOLISM Publication No. ________ Isadora Susan Daniels, B.A. Supervisory Professor: Cheng Chi Lee, Ph.D. Mechanisms that initiate and control the natural hypometabolic states of mammals are poorly understood. The laboratory developed a model of deep hypometabolism (DH) initiated by uptake of 5’-adenosine monophosphate (5’-AMP) into erythrocytes. Mice enter DH when given a high dose of 5’-AMP and the body cools readily. Influx of 5’-AMP appears to inhibit thermoregulatory control. In a 15°C environment, mice injected with 5’-AMP (0.5 mg/gw) enter a Phase I response in which oxygen consumption (VO2) drops rapidly to 1/3rd of euthermic levels. The Phase I response appears independent of body temperature (Tb). This is followed by gradual body temperature decline that correlates with VO2 decline, called Phase II response. Within 90 minutes, mouse Tb approaches 15°C, and VO2 is 1/10th of normal. Mice can remain several hours in this state, before gradually and safely recovering. The DH state translates to other mammalian species. Our studies show uptake and metabolism of 5’-AMP in erythrocytes causes biochemical changes that initiate DH. Increased AMP shifts the adenylate equilibrium toward ADP formation, consequently decreasing intracellular ATP. In turn, glycolysis slows, indicated by increased glucose and decreased lactate. 2,3-bisphosphoglycerate levels rise, allosterically reducing oxygen affinity for hemoglobin, and deoxyhemoglobin rises. Less oxygen transport to tissues likely triggers the DH model. The major intracellular pathway for AMP catabolism is catalyzed by AMP deaminase (AMPD). Multiple AMPD isozymes are expressed in various tissues, but erythrocytes only have AMPD3. Mice lacking AMPD3 were created to study control of the DH model, specifically in erythrocytes. Telemetric measurements demonstrate lower Tb and difficulty maintaining Tb under moderate metabolic stress. A more dramatic response to lower dose of 5’-AMP suggests AMPD activity in the erythrocyte plays an important role in control of the DH model. Analysis of adenylates in erythrocyte lysate shows 3-fold higher levels of ATP and ADP but similar AMP levels to wild-type. Taken together, results indicate alterations in energy status of erythrocytes can induce a hypometabolic state. AMPD3 control of AMP catabolism is important in controlling the DH model. Genetically reducing AMP catabolism in erythrocytes causes a phenotype of lower Tb and compromised ability to maintain temperature homeostasis.
Resumo:
Retinoids are known to inhibit proliferation of and induce terminal differentiation of many normal and transformed cells. It has been postulated that retinoids exert their effect by altering gene expression. HL-60 cells and macrophages both respond to retinoic acid action by the rapid induction of the enzyme tissue transglutaminase. The induction has been shown to be due to increased transcription of the transglutaminase gene. The first part of the dissertation studied the structure-function relationship of retinoid-regulated transglutaminase induction, differentiation and proliferation in HL-60 cells using retinoid analogs. The results indicated strict structural constraints and a strong structure-function correlation between transglutaminase induction and differentiation; those retinoids that induced transglutaminase also induced differentiation, those analogs that did not induce transglutaminase could not induce differentiation. The ability of the retinoids to induce transglutaminase in HL-60 cells was paralleled in macrophages. However, the antiproliferative effect of the retinoids displayed less stringent structural constraints than their differentiation- and transglutaminase-inducing properties. Specifically all the retinoids were able to inhibit proliferation to varying extents. It is concluded that the induction of transglutaminase and of differentiation by retinoids is mediated by receptors. While receptor mediation cannot be entirely ruled out, with the current data no definitive statement can be made about the antiproliferative activity of retinoids. Also, the concordance in the ability of the retinoids to induce transglutaminase and the ability to induce differentiation of HL-60 cells suggests that the former is an early response of the cells to retinoids and differentiation a later consequence on the same pathway. Using the induction of transglutaminase as an index of the direct, or primary, effect of retinoids on gene expression, the second part of the dissertation investigates, by 2D gel electrophoresis, the alteration in the rates of synthesis of other proteins in macrophages and HL-60 cells in response to short incubations with retinoic acid. Any changes in parallel with transglutaminase were taken to indicate proteins directly under the control of retinoic acid. It is concluded that retinoic acid regulates the expression of a circumscribed set of genes in a cell-specific manner. The results support the hypothesis that retinoids exert their multiple effects on myeloid cells, in part, by receptor-mediated alternations in gene expression. ^
Resumo:
In order to more fully understand the function of surface GalTase on mesenchymal cells, anti-GalTase IgG was used to (a) examine the role of surface GalTase during mouse mesenchymal cell migration on laminin and fibronectin; (b) define the plasma membrane distribution of GalTase by indirect immunofluorescence on migrating cells; (c) quantitate the level of surface GalTase on migrating cells; and (d) determine whether GalTase is associated with the cytoskeleton.^ Results show that anti-GalTase IgG was able to inhibit migration (48-80% as compared to basal rate) when cells were migrating on laminin-containing matrices. Monovalent Fab fragments inhibited migration on laminin by 90% after 4 hours. On the other hand, anti-GalTase IgG had no effect on cells migrating on fibronectin. This illustrates the substrate specificity of GalTase mediated-migration. When anti-GalTase IgG was used to localize surface GalTase on cells migratory on laminin, the enzyme was restricted to the leading and trailing edges of the cell. Assays indicate that GalTase is elevated approximately 3-fold when cells are migrating on laminin-containing matrices as compared to migratory cells on plastic or fibronectin, or as compared to stationary cells on any substrate. Laminin appears to recruit GalTase from preexisting intracellular pools to the growing lamellipodia.^ Double-label indirect immunofluorescence studies indicate that there is an apparent co-localization between some of the surface GalTase and some actin filaments. This relationship was explored by extracting cells prelabeled with anti-GalTase IgG and quantitated by radiolabeled second antibodies. Results show that 79% of the surface GalTase is associated with the cytoskeleton (as judged by detergent insolubility) when monovalent antibodies (Fab) are used. However virtually all (80-100%) of the surface GalTase can be induced to associate with the cytoskeleton when cross-linked with bivalent antibodies. Furthermore, when cells in suspension are incubated with divalent antibodies, an additional 66% of the surface GalTase can be induced to associate with the cytoskeleton. The elevated levels of surface GalTase detectable on cells migrating on laminin also appear to be associated with the cytoskeleton.^ Several lines of evidence suggest that GalTase is associated with F-actin. Data suggest that laminin induces the expression of surface GalTase to the growing lamellipodia where it becomes associated with the cytoskeleton leading to cell spreading and migration. (Abstract shortened with permission of author.) ^
Resumo:
The molecular complex containing the seven transmembrane helix photoreceptor S&barbelow;ensory R&barbelow;hodopsin I&barbelow; (SRI) and transducer protein HtrI (H&barbelow;alobacterial Transducer for SRI&barbelow;) mediates color-sensitive phototaxis responses in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light (orange + UV light) a repellent response by a two-photon reaction. Three aspects of SRI-HtrI structure/function and the signal transduction pathway were explored. First, the coupling of HtrI to the photoactive site of SRI was analyzed by mutagenesis and kinetic spectroscopy. Second, SRI-HtrI mutations and suppressors were selected and characterized to elucidate the color-sensing mechanism. Third, the signal relay through the transducer-bound histidine kinase was analyzed using an in vitro reconstitution system with known and newly identified taxis components. ^ Twenty-one mutations on HtrI were introduced by site-directed mutagenesis. Several replacements of charged residues perturbed the photochemical kinetics of SRI which led to the finding of a cluster of residues at the membrane/cytoplasm interface in HtrI electrostatically coupled to the photoactive site of SRI. We found by laser-flash kinetic spectroscopy that the transducer and these residues have specific effects on the light-induced proton transfer between the retinal chromophore and the protein. ^ One of the mutations showed an unusual mutant phenotype we called “inverted” signaling, in which the cell produces a repellent response to normally attractant light. Therefore, this mutant (E56Q of HtrI) had lost the color-discrimination by the SRI-HtrI complex. We used suppressor analysis to better understand the phenotype. Certain suppressors resulted in return of attractant responses to orange light but with inversion of the normally repellent response to white light to an attractant response. To explain this and other results, we formulated the Conformational Shuttling model in which the HtrI-SRI complex is poised in a metastable equilibrium of two conformations shifted in opposite directions by orange and white light. We tested this model by behavioral analysis (computerized cell tracking and motion study) of double mutants of inverting and suppressing mutations and the results confirmed the equilibrium-shift explanation. ^ We developed an in vitro system for measuring the effect of purified transducer on the histidine-kinase CheAH that controls the flagellar motor switch. The rate of kinase autophosphorylation was stimulated >2 fold in the reconstitution of the complete signal transduction system from purified components from H. salinarum. The in vitro assay also showed that the kinase activity was reduced in the absence and in the presence of high levels of linker protein CheWH. (Abstract shortened by UMI.) ^