990 resultados para strain relaxation
Resumo:
Taking polycrystalline cadmium as an example and by utilizing the predicted temperature or strain rate-dependence of the (Hall-Petch) stress-grain size parameters, a reasonably quantitative explanation is given for the grain size dependence of apparent activation volume measurements. The explanation involves the theoretical relation of these measurements to single-crystal measurements.
Resumo:
This report describes some preliminary experiments on the use of the relaxation technique for the reconstruction of the elements of a matrix given their various directional sums (or projections).
Resumo:
Recent optical kerr effect (OKE) studies have demonstrated that orientational relaxation of rod-like nematogens exhibits temporal power law decay at intermediate times not only near the isotropic–nematic (I–N) phase boundary but also in the nematic phase. Such behaviour has drawn an intriguing analogy with supercooled liquids. We have investigated both collective and single-particle orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I–N phase boundary, the system behaves remarkably like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system. A model liquid crystal, consisting of disk-like molecules, has also been investigated in molecular dynamics simulations for orientational relaxation along two isobars starting from the high temperature isotropic phase. The isobars have been so chosen that the phase sequence isotropic (I)–nematic (N)–columnar (C) appears upon cooling along one of them and the sequence isotropic (I)–columnar(C) along the other. While the orientational relaxation in the isotropic phase near the I–N phase transition shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I–C phase boundary. The origin of the power law decay in the single-particle second-rank orientational time correlation function (OTCF) is traced to the growth of the orientational pair distribution functions near the I–N phase boundary. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.
Resumo:
Pyrochlore phase free [Pb0.94Sr0.06] [(Mn1/3Sb2/3)(0.05)(Zr0.53Ti0.47)(0.95)] O-3 ceramics has been synthesized with pure Perovskite phase by semi-wet route using the columbite precursor method. The field dependences of the dielectric response and the conductivity have been measured in a frequency range from 50 Hz to 1 MHz and in a temperature range from 303 K to 773 K. An analysis of the real and imaginary parts of the dielectric permittivity with frequency has been performed, assuming a distribution of relaxation times. The scaling behavior of the dielectric loss spectra suggests that the distribution of the relaxation times is temperature independent. The SEM photographs of the sintered specimens present the homogenous structures and well-grown grains with a sharp grain boundary. The material exhibits tetragonal structure. When measured at frequency (100 Hz), the polarization shows a strong field dependence. Different piezoelectric figures of merit (k(p), d(33) and Q(m)) of the material have also been measured obtaining their values as 0.53, 271 pC/N and 1115, respectively, which are even higher than those of pure PZT with morphotropic phase boundary (MPB) composition. Thus the present ceramics have the optimal overall performance and are promising candidates for the various high power piezoelectric applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The composites consisting of amorphous matrix reinforced with crystalline dendrites offer extraordinary combinations of strength, stiffness, and toughness and can be processed in bulk. Hence, they have been receiving intense research interest, with a primary focus to study their mechanical properties. In this paper, the temperature and strain rate effects on the uniaxial compression response of a tailored bulk metallic glass (BMG) composite has been investigated. Experimental results show that at temperatures ranging between ambient to 500 K and at all strain rates; the onset of plastic deformation in the composite is controlled by that in the dendrites. As the temperature is increased to the glass transition temperature of the matrix and beyond, flow in the amorphous matrix occurs readily and hence it dictates the composite's response. The role of the constituent phases in controlling the deformation mechanism of the composite has been verified by assessing the strain rate sensitivity and the activation volume for deformation. The composite is rate sensitive at room temperature with values of strain rate sensitivity and activation volume being similar to that of the dendrites. At test temperatures near to the glass transition temperature, the composite however becomes rate-insensitive corresponding to that of the matrix phase. At low strain rates, serrated flow akin to that of dynamic strain ageing in crystalline alloys was observed and the serration magnitude decreases with increasing temperature. Initiation of the shear bands at the dendrite/matrix interface and propagation of them through the matrix ligaments until their arrest at another interface is the responsible mechanism for this. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Vertical arrays of carbon nanotubes (VACNTs) show unique mechanical behavior in compression, with a highly nonlinear response similar to that of open cell foams and the ability to recover large deformations. Here, we study the viscoelastic response of both freestanding VACNT arrays and sandwich structures composed of a VACNT array partially embedded between two layers of poly(dimethylsiloxane) (PDMS) and bucky paper. The VACNTs tested are similar to 2 mm thick foams grown via an injection chemical vapor deposition method. Both freestanding and sandwich structures exhibit a time-dependent behavior under compression. A power-law function of time is used to describe the main features observed in creep and stress-relaxation tests. The power-law exponents show nonlinear viscoelastic behavior in which the rate of creep is dependent upon the stress level and the rate of stress relaxation is dependent upon the strain level. The results show a marginal effect of the thin PDMS/bucky paper layers on the viscoelastic responses. At high strain levels (epsilon - 0.8), the peak stress for the anchored CNTs reaches similar to 45 MPa, whereas it is only similar to 15MPa for freestanding CNTs, suggesting a large effect of PDMS on the structural response of the sandwich structures. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3699184]
Resumo:
The orientational relaxation dynamics of water confined between mica surfaces is investigated using molecular dynamics simulations. The study illustrates the wide heterogeneity that exists in the dynamics of water adjacent to a strongly hydrophilic surface such as mica. Analysis of the survival probabilities in different layers is carried out by normalizing the corresponding relaxation times with bulk water layers of similar thickness. A 10-fold increase in the survival times is observed for water directly in contact with the mica surface and a non-monotonic variation in the survival times is observed moving away from the mica surface to the bulk-like interior. The orientational relaxation time is highest for water in the contact layer, decreasing monotonically away from the surface. In all cases the ratio of the relaxation times of the 1st and 2nd rank Legendre polynomials of the HH bond vector is found to lie between 1.5 and 1.9 indicating that the reorientational relaxation in the different water layers is governed by jump dynamics. The orientational dynamics of water in the contact layer is particularly novel and is found to undergo distinct two-dimensional hydrogen bond jump reorientational dynamics with an average waiting time of 4.97 ps. The waiting time distribution is found to possess a long tail extending beyond 15 ps. Unlike previously observed jump dynamics in bulk water and other surfaces, jump events in the mica contact layer occur between hydrogen bonds formed by the water molecule and acceptor oxygens on the mica surface. Despite slowing down of the water orientational relaxation near the surface, life-times of water in the hydration shell of the K ion are comparable to that observed in bulk salt solutions. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4717710]
Resumo:
Electromagnetic characteristics like absorption and electric field distributions of metallic carbon nanotubes are simulated using the discrete dipole approximation. Absorption of electromagnetic energy over a range of frequencies are studied for both parallel and perpendicular incidence of light to the axis of carbon nanotube. Our simulations show 30% enhancement of electric field in the radial direction for nanotubes with axial strain of 0.2 when compared to unstrained nanotubes in case of parallel incidence of light. Simulations for perpendicular incidence of light show an oscillatory behavior for the electric field in the axial direction. Analysis of simulation results indicate potential applications in designing nanostructured antennae and electromagnetic transmission/shielding using CNT-composite.
Effect of the Edge Type and Strain on the Structural, Electronic and Magnetic Properties of the BNRs
Resumo:
We present the effect of edge structures on the edge energy and stress of BN nanoribbons. Ab initio density functional calculations show that the armchair edge is lower in energy than the zigzag edge by 0.43 eV/angstrom. Both types of the edges are under the compressive stress. The zigzag edges are mechanically more stable than the armchair edges. Based on the calculated edge energies, the equilibrium shape of the BN flakes are found to be regular hexagonal, and dominated by the armchair edges. The zigzag ribbons are found to be half-metallic, whereas the armchair ribbons are semiconducting.
Resumo:
Layer-wise, distance-dependent orientational relaxation of water confined in reverse micelles (RM) is studied using theoretical and computational tools. We use both a newly constructed ``spins on a ring'' (SOR) Ising-type model (with Shore-Zwanzig rotational dynamics) and atomistic simulations with explicit water. Our study explores the effect of reverse micelle size and role of intermolecular correlations, compromised by the presence of a highly polar surface, on the distance (from the interface) dependence of water relaxation. The ``spins on a ring'' model can capture some aspects of distance dependence of relaxation, such as acceleration of orientational relaxation at intermediate layers. In atomistic simulations, layer-wise decomposition of hydrogen bond formation pattern clearly reveals that hydrogen bond arrangement of water at a certain distance away from the surface can remain frustrated due to the interaction with the polar surface head groups. This layer-wise analysis also reveals the presence of a non-monotonic slow relaxation component which can be attributed to this frustration effect and which is accentuated in small to intermediate size RMs. For large size RMs, the long time component decreases monotonically from the interface to the interior of the RMs with slowest relaxation observed at the interface. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4732095]
Resumo:
Using all-atom molecular dynamics simulation, we have studied the effect of size and temperature on the strain induced phase transition of wurtzite CdSe nanowires. The wurtzite structure transforms into a five-fold coordinated structure under uniaxial strain along the c axis. Our results show that lower temperature and smaller size of the nanowires stabilize the five-fold coordinated phase which is not a stable structure in bulk CdSe. High reversibility of this transformation with a very small heat loss will make these nanowires suitable for building efficient nanodevices. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4734990]
Resumo:
We develop a coupled nonlinear oscillator model involving magnetization and strain to explain several experimentally observed dynamical features exhibited by forced magnetostrictive ribbon. Here we show that the model recovers the observed period-doubling route to chaos as function of the dc field for a fixed ac field and quasiperiodic route to chaos as a function of the ac field, keeping the dc field constant. The model also predicts induced and suppressed chaos under the influence of an additional small-amplitude near-resonant ac field. Our analysis suggests rich dynamics in coupled order-parameter systems such as magnetomartensitic and magnetoelectric materials.