927 resultados para state filling effect
Resumo:
We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.
Resumo:
Polycrystalline nano-grain-boundary multi-doping ZnO-based nonlinear varistors with higher concentration additives have been fabricated by sol-gel and standard solid-state reaction method, of which the best sample has a very high threshold voltage of E-b = 3300 V/mm. The effect of sintering processes, sintering temperature and sintering time, and that of additive concentration of Bi2O3 on E-b of the samples are systematically investigated. The results show that the great merit of sol-gel method is its high threshold voltage obtained by a lower sintering temperature than the solid-state reaction method. The present work also shows that five phases including solid-state sintering, rich Bi liquid phase formation and ZnO as well as other additive dissolution, ZnO grain growth, the secondary phase sufficient formation and evolution have been experienced at different sintering temperatures. The hole type defect and nonhomogeneity of the microstructure will lead to the decrease of threshold voltage, i.e., the grain size and the homogeneity of the material will be important factors and directly affect the characteristic of the varistor. The sintering characteristic and the influence of Bi2O3 content on the threshold voltage are also discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The center-of-mass motion of a quasi-two-dimensional exciton with spin-orbit coupling (SOC) in the presence of a perpendicular electric field is calculated by perturbation theory. The results indicate that a quasi-two-dimensional exciton with SOC can exhibit the spin Hall effect (SHE), which is similar to two-dimensional electrons and holes. A likely way to establish exciton SHE in experiments and a possible phase transition from dark to bright state driven by SOC are suggested. (c) 2007 American Institute of Physics.
Resumo:
Using time-resolved photoluminescence and time-resolved Kerr rotation spectroscopy, we explore the unique electron spin behavior in an InAs submonolayer sandwiched in a GaAs matrix, which shows very different spin characteristics under resonant and non-resonant excitations. While a very long spin relaxation lifetime of a few nanoseconds at low temperature is observed under non-resonant excitation, it decreases dramatically under resonant excitation. These interesting results are attributed to the difference in electron-hole interactions caused by non-geminate or geminate capture of photo-generated electron-hole pairs in the two excitation cases, and provide a direct verification of the electron-hole spatial correlation effect on electron spin relaxation. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A modified version of the Jain-Roulston (J-R) model is developed that takes into account the compensation effect of B to Ge in strained SiGe layers for the first time. Based on this new model, the distribution of the bandgap narrowing (BGN) between the conduction and valence bands is calculated. The influence of this distribution on the transport characteristics of abrupt SiGe heterojunction bipolar transistors (HBTs) has been further considered by using the tunnelling and thermionic emission mechanisms instead of the drift and diffusion mechanisms at the interfaces where discontinuities in energy levels appear. The results show that our modified J-R model better fits the experimental values, and the energy band structure has a strong influence on electrical characteristics.
Resumo:
Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.
Resumo:
A systematic investigation is made on the influence of the longitudinal and transverse period distributions of quantum dots on the elastic strain field. The results showed that the effects of the longitudinal period and transverse period on the strain field are just opposite along the direction of center-axis of the quantum dots, and under proper conditions, both effects can be eliminated. The results demonstrate that in calculating the effect of the strain field on the electronic structure, one must take into account the quantum dots period distribution, and it is inadequate to use the isolated quantum dot model in simulating the strain field.
Resumo:
Based on the band-anticrossing model, the effect of the strain-compensated layer and the strain-mediated layer on the band structure, the gain, and the differential gain of GaInNAs-GaAs quantum well lasers have been investigated. Different band-filling mechanisms have been illustrated. Compared to the GaInNAs-GaAs single quantum well with the same wavelength,, the introduction. (if the strain-compensated layer and the strain-mediated layer increases the transparency carrier density. However, these multilayer structures help to suppress the degradation of the differential gain.
Resumo:
Silicon-rich silicon oxide (SRSO) films are prepared by plasma-enhanced chemical vapor deposition method at the substrate temperature of 200degreesC. The effect of rapid thermal annealing and hydrogen plasma treatment on tire microstructure and light-emission of SRSO films are investigated in detail using micro-Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectra. It is found that the phase-separation degree of the films decreases with increasing annealing temperature from 300 to 600degreesC, while it increases with increasing annealing temperature from 600 to 900degreesC. The light-emission of the films are enhanced with increasing annealing temperature up to 500degreesC, while it is rapidly reduced when the annealing temperature exceeds 600degreesC. The peak position of the PL spectrum blueshifts by annealing at the temperature of 300degreesC, then it red-shifts with further raising annealing temperature. The following hydrogen plasma treatment results in a disproportionate increase of the PL intensity and a blueshift or redshift of the peak positions, depending on the pristine annealing temperature. It is thought that the size of amorphous silicon clusters, surface structure of the clusters and the distribution of hydrogen in the films can be changed during the annealing procedure. The results indicate that not only cluster size but also surface state of the clusters plays an important role in the determination of electronic structure of the amorphous silicon cluster and recombination process of light-generated carriers.
Resumo:
The effect of the growth temperature on the properties of InAlAs/AlGaAs quantum dots grown on GaAs(100) substrates is investigated. The optical efficiency and structural uniformity are improved by increasing the growth temperature from 530 to 560 degreesC. The improvements of InAlAs/AlGaAs quantum-dot characteristics could be explained by suppressing the incorporation of oxygen and the formation of group-III vacancies. Furthermore, edge-emitting laser diodes with six quantum-dot layers grown at 560 degreesC have been fabricated. Lasing occurs via the ground state at 725 nm, with a room-temperature threshold current density of 3.9 kA/cm(2), significantly better than previously reported values for this quantum-dot systems. (C) 2002 American Institute of Physics.
Resumo:
The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.
Resumo:
Temperature-dependent photoluminescence measurements have been carried out in zinc-blende InGaN epilayers grown on GaAs substrates by metalorganic vapor-phase epitaxy. An anomalous temperature dependence of the peak position of the luminescence band was observed. Considering thermal activation and the transfer of excitons localized at different potential minima, we employed a model to explain the observed behavior. A good agreement between the theory and the experiment is achieved. At high temperatures, the model can be approximated to the band-tail-state emission model proposed by Eliseev et al. [Appl. Phys. Lett. 71, 569 (1997)]. (C) 2001 American Institute of Physics.
Resumo:
Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.
Resumo:
Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the electronic structures of the inhomogeneous quantum dots within the framework of the effective mass theory. The results show that the energies of electron and hole states depend sensitively on the relative magnitude 77 of the core radius to the capped quantum dot radius. The spatial distribution of the electrons and holes vary significantly when the ratio eta changes. A quantum-confinement-driven type-II-type-I transition is found in GaAs/AlxGa1-xAs-capped quantum dot structures. The phase diagram is obtained for different capped quantum dot radii. The ground-state exciton binding energy shows a highly nonlinear dependence on the innner structures of inhomogeneous quantum dots, which originates from the redistribution of the electron and hole wave functions.