970 resultados para soil dissolved C pool


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of methanol of low concentration on adsorption and leaching of atrazine and tebuconazole was studied in this paper. The adsorption coefficients and the retardation factors (R-m) of pesticides on EUROSOIL 3# log-linearly decreased as volumetric fraction of methanol (f(c)) was increased in the binary solvent mixtures of methanol and water. These data are consistent with solvophobic theory formerly outlined for describing the adsorption and transport of hydrophobic organic chemicals from mixed solvents. Nevertheless, the adsorption of these pesticides in soil-water system slightly increased when the soil was pre-washed with methanol in comparison with that pre-washed with water (pure water system). Furthermore, their adsorption coefficients were still higher in binary solvent systems with methanol of very low concentrations, i.e. f(c) < 0.03 for atrazine and f(c) < 0.01 for tebuconazole, than those in pure water system. The adsorption coefficients (logK(w)) of atrazine and tebuconazole predicted by solvophobic theory were 0.5792 and 1.6525, respectively, and their experimental logK(w) were 0.3701 and 1.6275 in pure water system. Obviously, the predicted log K-w of the two pesticides was higher than the experimental log K-w in pure water system. The predicted K-w and the retardation factor (R-w) in pure water system by solvophobic theory are thus possibly inaccurate. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most biological diversity on this planet is probably harbored in soils. Understanding the diversity and function of the microbiological component of soil poses great challenges that are being overcome by the application of molecular biological approaches. This review covers one of many approaches being used: separation of polymerase chain reaction (PCR) amplicons using denaturing gradient gel electrophoresis (DGGE). Extraction of nucleic acids directly from soils allows the examination of a community without the limitation posed by cultivation. Polymerase chain reaction provides a means to increase the numbers of a target for its detection on gels. Using the rRNA genes as a target for PCR provides phylogenetic information on populations comprising communities. Fingerprints produced by this method have allowed spatial and temporal comparisons of soil communities within and between locations or among treatments. Numerous samples can be compared because of the rapid high throughput nature of this method. Scientists now have the means to begin addressing complex ecological questions about the spatial, temporal, and nutritional interactions faced by microbes in the soil environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turnover of soil organic matter (SOM) is coupled to the cycling of nutrients in soil through the activity of soil microorganisms. Biological availability of organic substrate in soil is related to the chemical quality of the organic material and to its degree of physical protection. SOM fractions can provide information on the turnover of organic matter (OM), provided the fractions can be related to functional or structural components in soil. Ultrasonication is commonly used to disrupt the soil structure prior to physical fractionation according to particle size, but may cause redistribution of OM among size fractions. The presence of mineral particles in size fractions can complicate estimations of OM turnover time within the fractions. Densiometric separation allows one to physically separate OM found within a specific size class from the heavier-density mineral particles. Nutrient contents and mineralization potential were determined for discrete size/density OM fractions isolated from within the macroaggregate structure of cultivated grassland soils. Eighteen percent of the total soil C and 25% of the total soil N in no-till soil was associated with fine-silt size particles having a density of 2.07-2.21 g/cm3 isolated from inside macroaggregates (enriched labile fraction or ELF). The amount of C and N sequestered in the ELF fraction decreased as the intensity of tillage increased. The specific rate of mineralization (mug net mineral N/mug total N in the fraction) for macroaggregate-derived ELF was not different for the three tillage treatments but was greater than for intact macroaggregates. The methods described here have improved our ability to quantitatively estimate SOM fractions, which in turn has increased our understanding of SOM dynamics in cultivated grassland systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to classical methods, namely kriging, Inverse Distance Weighting (IDW) and splines, which have been frequently used for interpolating the spatial patterns of soil properties, a relatively more accurate surface modelling technique is being developed in recent years, namely high accuracy surface modelling (HASM). It has been used in the numerical tests, DEM construction and the interpolation of climate and ecosystem changes. In this paper, HASM was applied to interpolate soil pH for assessing its feasibility of soil property interpolation in a red soil region of Jiangxi Province, China. Soil pH was measured on 150 samples of topsoil (0-20 cm) for the interpolation and comparing the performance of HASM, kriging. IDW and splines. The mean errors (MEs) of interpolations indicate little bias of interpolation for soil pH by the four techniques. HASM has less mean absolute error (MAE) and root mean square error (RMSE) than kriging, IDW and splines. HASM is still the most accurate one when we use the mean rank and the standard deviation of the ranks to avoid the outlier effects in assessing the prediction performance of the four methods. Therefore, HASM can be considered as an alternative and accurate method for interpolating soil properties. Further researches of HASM are needed to combine HASM with ancillary variables to improve the interpolation performance and develop a user-friendly algorithm that can be implemented in a GIS package. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High levels of available nitrogen (N) and carbon (C) have the potential to increase soil N and C mineralization We hypothesized that with an external labile C or N supply alpine meadow soil will have a significantly higher C mineralization potential and that temperature sensitivity of C mineralization will increase To test the hypotheses an incubation experiment was conducted with two doses of N or C supply at temperature of 5 15 and 25 C Results showed external N supply had no significant effect on CO2 emission However external C supply increased CO2 emission Temperature coefficient (Q(10)) ranged from 113 to 1 29 Significantly higher values were measured with C than with N addition and control treatment Temperature dependence of C mineralization was well-represented by exponential functions Under the control CO2 efflux rate was 425 g CO2-Cm-2 year(-1) comparable to the in situ measurement of 422 g CO2-Cm-2 year(-1) We demonstrated if N is disregarded microbial decomposition is primarily limited by lack of labile C It is predicted that labile C supply would further increase CO2 efflux from the alpine meadow soil (C) 2010 Elsevier Masson SAS All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mapping the spatial distribution of contaminants in soils is the basis of pollution evaluation and risk control. Interpolation methods are extensively applied in the mapping processes to estimate the heavy metal concentrations at unsampled sites. The performances of interpolation methods (inverse distance weighting, local polynomial, ordinary kriging and radial basis functions) were assessed and compared using the root mean square error for cross validation. The results indicated that all interpolation methods provided a high prediction accuracy of the mean concentration of soil heavy metals. However, the classic method based on percentages of polluted samples, gave a pollution area 23.54-41.92% larger than that estimated by interpolation methods. The difference in contaminated area estimation among the four methods reached 6.14%. According to the interpolation results, the spatial uncertainty of polluted areas was mainly located in three types of region: (a) the local maxima concentration region surrounded by low concentration (clean) sites, (b) the local minima concentration region surrounded with highly polluted samples; and (c) the boundaries of the contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.