943 resultados para single operation cycle
Resumo:
A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2, and NOx were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependant on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16×1015-5.42×1016 kg-1, 0.03-0.72 g.kg-1, and 3.25-37.94 g.kg-1 respectively for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4 to 100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) [1].
Resumo:
Ordinary desktop computers continue to obtain ever more resources – in-creased processing power, memory, network speed and bandwidth – yet these resources spend much of their time underutilised. Cycle stealing frameworks harness these resources so they can be used for high-performance computing. Traditionally cycle stealing systems have used client-server based architectures which place significant limits on their ability to scale and the range of applica-tions they can support. By applying a fully decentralised network model to cycle stealing the limits of centralised models can be overcome. Using decentralised networks in this manner presents some difficulties which have not been encountered in their previous uses. Generally decentralised ap-plications do not require any significant fault tolerance guarantees. High-performance computing on the other hand requires very stringent guarantees to ensure correct results are obtained. Unfortunately mechanisms developed for traditional high-performance computing cannot be simply translated because of their reliance on a reliable storage mechanism. In the highly dynamic world of P2P computing this reliable storage is not available. As part of this research a fault tolerance system has been created which provides considerable reliability without the need for a persistent storage. As well as increased scalability, fully decentralised networks offer the ability for volunteers to communicate directly. This ability provides the possibility of supporting applications whose tasks require direct, message passing style communication. Previous cycle stealing systems have only supported embarrassingly parallel applications and applications with limited forms of communication so a new programming model has been developed which can support this style of communication within a cycle stealing context. In this thesis I present a fully decentralised cycle stealing framework. The framework addresses the problems of providing a reliable fault tolerance sys-tem and supporting direct communication between parallel tasks. The thesis includes a programming model for developing cycle stealing applications with direct inter-process communication and methods for optimising object locality on decentralised networks.
Resumo:
This paper traces the history of store (retailer-controlled) and national (manufacture controlled)brands; identifies the key historical characteristics of the past 200 years of marketing history;describes the four main time periods of U.S. retail marketing (1800 - 2000); and comments on the most likely developments within the current phases of brand marketing. Will the future focus on technology and new forms of communications? The Internet exemplifies an unconventional retailing environment, with etailer numbers growing rapidly. The central proposition of this paper is that a "cycle of control" - a pattern of marketing developments within the history of retailing and national marketing communications - Can indicate the success of marketing strategies in the future.
Resumo:
In truck manufacturing, the exhaust and air inlet pipes are specialized equipment that requires highly skilled, heavy machinery and small batch production methods. This paper describes a project to develop the computer numerically controlled (CNC) pipe bending process for a truck component manufacturer. The company supplies a huge range of heavy duty truck parts to the domestic market and is a significant supplier in Australia. The company has been using traditional methods of machine assisted manual pipe bending techniques. In a drive of continuous improvement, the company has acquired a pre-owned CNC bending machine capable of bending pipes automatically up to 25 bends. However, due to process mismatch, this machine is only used for single bending operation. The researchers studied the bending system and changed the manufacturing process. Using an example exhaust pipe as the benchmark, a significant drop of manufacturing lead time from 70 minutes to 40 minutes for each pipe was demonstrated. There was also a decrease of material cost due to the multiple bends part in one piece without cutting excessive materials for each single bend like it used to be.
Using Agents for Mining Maintenance Data while interacting in 3D Objectoriented Virtual Environments
Resumo:
This report demonstrates the development of: (a) object-oriented representation to provide 3D interactive environment using data provided by Woods Bagot; (b) establishing basis of agent technology for mining building maintenance data, and (C) 3D interaction in virtual environments using object-oriented representation. Applying data mining over industry maintenance database has been demonstrated in the previous report.
Resumo:
This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data
Resumo:
This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. • Refining the development of a multi agent system for data mining in virtual environments (Active Worlds) by developing and implementing a filtering agent on the results obtained from applying data mining techniques on the maintenance data. • Integrating the filtering agent within the multi agents system in an interactive networked multi-user 3D virtual environment. • Populating maintenance data and discovering new rules of knowledge.
Resumo:
“SOH see significant benefit in digitising its drawings and operation and maintenance manuals. Since SOH do not currently have digital models of the Opera House structure or other components, there is an opportunity for this national case study to promote the application of Digital Facility Modelling using standardized Building Information Models (BIM)”. The digital modelling element of this project examined the potential of building information models for Facility Management focusing on the following areas: • The re-usability of building information for FM purposes • BIM as an Integrated information model for facility management • Extendibility of the BIM to cope with business specific requirements • Commercial facility management software using standardised building information models • The ability to add (organisation specific) intelligence to the model • A roadmap for SOH to adopt BIM for FM The project has established that BIM – building information modelling - is an appropriate and potentially beneficial technology for the storage of integrated building, maintenance and management data for SOH. Based on the attributes of a BIM, several advantages can be envisioned: consistency in the data, intelligence in the model, multiple representations, source of information for intelligent programs and intelligent queries. The IFC – open building exchange standard – specification provides comprehensive support for asset and facility management functions, and offers new management, collaboration and procurement relationships based on sharing of intelligent building data. The major advantages of using an open standard are: information can be read and manipulated by any compliant software, reduced user “lock in” to proprietary solutions, third party software can be the “best of breed” to suit the process and scope at hand, standardised BIM solutions consider the wider implications of information exchange outside the scope of any particular vendor, information can be archived as ASCII files for archival purposes, and data quality can be enhanced as the now single source of users’ information has improved accuracy, correctness, currency, completeness and relevance. SOH current building standards have been successfully drafted for a BIM environment and are confidently expected to be fully developed when BIM is adopted operationally by SOH. There have been remarkably few technical difficulties in converting the House’s existing conventions and standards to the new model based environment. This demonstrates that the IFC model represents world practice for building data representation and management (see Sydney Opera House – FM Exemplar Project Report Number 2005-001-C-3, Open Specification for BIM: Sydney Opera House Case Study). Availability of FM applications based on BIM is in its infancy but focussed systems are already in operation internationally and show excellent prospects for implementation systems at SOH. In addition to the generic benefits of standardised BIM described above, the following FM specific advantages can be expected from this new integrated facilities management environment: faster and more effective processes, controlled whole life costs and environmental data, better customer service, common operational picture for current and strategic planning, visual decision-making and a total ownership cost model. Tests with partial BIM data – provided by several of SOH’s current consultants – show that the creation of a SOH complete model is realistic, but subject to resolution of compliance and detailed functional support by participating software applications. The showcase has demonstrated successfully that IFC based exchange is possible with several common BIM based applications through the creation of a new partial model of the building. Data exchanged has been geometrically accurate (the SOH building structure represents some of the most complex building elements) and supports rich information describing the types of objects, with their properties and relationships.
Resumo:
Existing widely known environmental assessment models, primarily those for Life Cycle Assessment of manufactured products and buildings, were reviewed to grasp their characteristics, since the past several years have seen a significant increase in interest and research activity in the development of building environmental assessment methods. Each method or tool was assessed under the headings of description, data requirement, end-use, assessment criteria (scale of assessment and scoring/ weighting system)and present status
Resumo:
The construction industry is categorised as being an information-intensive industry and described as one of the most important industries in any developed country, facing a period of rapid and unparalleled change (Industry Science Resources 1999) (Love P.E.D., Tucker S.N. et al. 1996). Project communications are becoming increasingly complex, with a growing need and fundamental drive to collaborate electronically at project level and beyond (Olesen K. and Myers M.D. 1999; Thorpe T. and Mead S. 2001; CITE 2003). Yet, the industry is also identified as having a considerable lack of knowledge and awareness about innovative information and communication technology (ICT) and web-based communication processes, systems and solutions which may prove beneficial in the procurement, delivery and life cycle of projects (NSW Government 1998; Kajewski S. and Weippert A. 2000). The Internet has debatably revolutionised the way in which information is stored, exchanged and viewed, opening new avenues for business, which only a decade ago were deemed almost inconceivable (DCITA 1998; IIB 2002). In an attempt to put these ‘new avenues of business’ into perspective, this report provides an overall ‘snapshot’ of current public and private construction industry sector opportunities and practices in the implementation and application of web-based ICT tools, systems and processes (e-Uptake). Research found that even with a reserved uptake, the construction industry and its participating organisations are making concerted efforts (fortunately with positive results) in taking up innovative forms of doing business via the internet, including e-Tendering (making it possible to manage the entire tender letting process electronically and online) (Anumba C.J. and Ruikar K. 2002; ITCBP 2003). Furthermore, Government (often a key client within the construction industry),and with its increased tendency to transact its business electronically, undoubtedly has an effect on how various private industry consultants, contractors, suppliers, etc. do business (Murray M. 2003) – by offering a wide range of (current and anticipated) e-facilities / services, including e-Tendering (Ecommerce 2002). Overall, doing business electronically is found to have a profound impact on the way today’s construction businesses operate - streamlining existing processes, with the growth in innovative tools, such as e-Tender, offering the construction industry new responsibilities and opportunities for all parties involved (ITCBP 2003). It is therefore important that these opportunities should be accessible to as many construction industry businesses as possible (The Construction Confederation 2001). Historically, there is a considerable exchange of information between various parties during a tendering process, where accuracy and efficiency of documentation is critical. Traditionally this process is either paper-based (involving large volumes of supporting tender documentation), or via a number of stand-alone, non-compatible computer systems, usually costly to both the client and contractor. As such, having a standard electronic exchange format that allows all parties involved in an electronic tender process to access one system only via the Internet, saves both time and money, eliminates transcription errors and increases speed of bid analysis (The Construction Confederation 2001). Supporting this research project’s aims and objectives, researchers set to determine today’s construction industry ‘current state-of-play’ in relation to e-Tendering opportunities. The report also provides brief introductions to several Australian and International e-Tender systems identified during this investigation. e-Tendering, in its simplest form, is described as the electronic publishing, communicating, accessing, receiving and submitting of all tender related information and documentation via the internet, thereby replacing the traditional paper-based tender processes, and achieving a more efficient and effective business process for all parties involved (NT Governement 2000; NT Government 2000; NSW Department of Commerce 2003; NSW Government 2003). Although most of the e-Tender websites investigated at the time, maintain their tendering processes and capabilities are ‘electronic’, research shows these ‘eTendering’ systems vary from being reasonably advanced to more ‘basic’ electronic tender notification and archiving services for various industry sectors. Research also indicates an e-Tender system should have a number of basic features and capabilities, including: • All tender documentation to be distributed via a secure web-based tender system – thereby avoiding the need for collating paperwork and couriers. • The client/purchaser should be able to upload a notice and/or invitation to tender onto the system. • Notification is sent out electronically (usually via email) for suppliers to download the information and return their responses electronically (online). • During the tender period, updates and queries are exchanged through the same e-Tender system. • The client/purchaser should only be able to access the tenders after the deadline has passed. • All tender related information is held in a central database, which should be easily searchable and fully audited, with all activities recorded. • It is essential that tender documents are not read or submitted by unauthorised parties. • Users of the e-Tender system are to be properly identified and registered via controlled access. In simple terms, security has to be as good as if not better than a manual tender process. Data is to be encrypted and users authenticated by means such as digital signatures, electronic certificates or smartcards. • All parties must be assured that no 'undetected' alterations can be made to any tender. • The tenderer should be able to amend the bid right up to the deadline – whilst the client/purchaser cannot obtain access until the submission deadline has passed. • The e-Tender system may also include features such as a database of service providers with spreadsheet-based pricing schedules, which can make it easier for a potential tenderer to electronically prepare and analyse a tender. Research indicates the efficiency of an e-Tender process is well supported internationally, with a significant number, yet similar, e-Tender benefits identified during this investigation. Both construction industry and Government participants generally agree that the implementation of an automated e-Tendering process or system enhances the overall quality, timeliness and cost-effectiveness of a tender process, and provides a more streamlined method of receiving, managing, and submitting tender documents than the traditional paper-based process. On the other hand, whilst there are undoubtedly many more barriers challenging the successful implementation and adoption of an e-Tendering system or process, researchers have also identified a range of challenges and perceptions that seem to hinder the uptake of this innovative approach to tendering electronically. A central concern seems to be that of security - when industry organisations have to use the Internet for electronic information transfer. As a result, when it comes to e-Tendering, industry participants insist these innovative tendering systems are developed to ensure the utmost security and integrity. Finally, if Australian organisations continue to explore the competitive ‘dynamics’ of the construction industry, without realising the current and future, trends and benefits of adopting innovative processes, such as e-Tendering, it will limit their globalising opportunities to expand into overseas markets and allow the continuation of international firms successfully entering local markets. As such, researchers believe increased knowledge, awareness and successful implementation of innovative systems and processes raises great expectations regarding their contribution towards ‘stimulating’ the globalisation of electronic procurement activities, and improving overall business and project performances throughout the construction industry sectors and overall marketplace (NSW Government 2002; Harty C. 2003; Murray M. 2003; Pietroforte R. 2003). Achieving the successful integration of an innovative e-Tender solution with an existing / traditional process can be a complex, and if not done correctly, could lead to failure (Bourn J. 2002).