926 resultados para signal noise


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the areawide Dynamic ROad traffic NoisE (DRONE) simulator, and its implementation as a tool for noise abatement policy evaluation. DRONE involves integrating a road traffic noise estimation model with a traffic simulator to estimate road traffic noise in urban networks. An integrated traffic simulation-noise estimation model provides an interface for direct input of traffic flow properties from simulation model to noise estimation model that in turn estimates the noise on a spatial and temporal scale. The output from DRONE is linked with a geographical information system for visual representation of noise levels in the form of noise contour maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A road traffic noise prediction model (ASJ MODEL-1998) has been integrated with a road traffic simulator (AVENUE) to produce the Dynamic areawide Road traffic NoisE simulator-DRONE. This traffic-noise-GIS based integrated tool is upgraded to predict noise levels in built-up areas. The integration of traffic simulation with a noise model provides dynamic access to traffic flow characteristics and hence automated and detailed predictions of traffic noise. The prediction is not only on the spatial scale but also on temporal scale. The linkage with GIS gives a visual representation to noise pollution in the form of dynamic areawide traffic noise contour maps. The application of DRONE on a real world built-up area is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant mineral of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm-1 between kaolinite and halloysite. It can not be obviously differentiated the kaolinite and halloysite, let alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, give us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in the all range of their spectra, and it also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm based on the concept of combining Kalman filter and Least Error Square (LES) techniques is proposed in this paper. The algorithm is intended to estimate signal attributes like amplitude, frequency and phase angle in the online mode. This technique can be used in protection relays, digital AVRs, DGs, DSTATCOMs, FACTS and other power electronics applications. The Kalman filter is modified to operate on a fictitious input signal and provides precise estimation results insensitive to noise and other disturbances. At the same time, the LES system has been arranged to operate in critical transient cases to compensate the delay and inaccuracy identified because of the response of the standard Kalman filter. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations and a laboratory test are presented to highlight the usefulness of the proposed method. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a number of techniques for GNSS navigation message authentication. A detailed analysis of the security facilitated by navigation message authentication is given. The analysis takes into consideration the risk of critical applications that rely on GPS including transportation, finance and telecommunication networks. We propose a number of cryptographic authentication schemes for navigation data authentication. These authentication schemes provide authenticity and integrity of the navigation data to the receiver. Through software simulation, the performance of the schemes is quantified. The use of software simulation enables the collection of authentication performance data of different data channels, and the impact of various schemes on the infrastructure and receiver. Navigation message authentication schemes have been simulated at the proposed data rates of Galileo and GPS services, for which the resulting performance data is presented. This paper concludes by making recommendations for optimal implementation of navigation message authentication for Galileo and next generation GPS systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voice recognition is one of the key enablers to reduce driver distraction as in-vehicle systems become more and more complex. With the integration of voice recognition in vehicles, safety and usability are improved as the driver’s eyes and hands are not required to operate system controls. Whilst speaker independent voice recognition is well developed, performance in high noise environments (e.g. vehicles) is still limited. La Trobe University and Queensland University of Technology have developed a low-cost hardware-based speech enhancement system for automotive environments based on spectral subtraction and delay–sum beamforming techniques. The enhancement algorithms have been optimised using authentic Australian English collected under typical driving conditions. Performance tests conducted using speech data collected under variety of vehicle noise conditions demonstrate a word recognition rate improvement in the order of 10% or more under the noisiest conditions. Currently developed to a proof of concept stage there is potential for even greater performance improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined specular reflection and diffusion model using the radiosity technique was developed to calculate road traffic noise level on residential balconies. The model is capable of numerous geometrical configurations for a single balcony situated in the centre of a street canyon. The geometry of the balcony and the street can be altered with width,length and height. The model was used to calculate for three different geometrical and acoustic absorption characteristics for a balcony. The calculated results are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditional searching method for model-order selection in linear regression is a nested full-parameters-set searching procedure over the desired orders, which we call full-model order selection. On the other hand, a method for model-selection searches for the best sub-model within each order. In this paper, we propose using the model-selection searching method for model-order selection, which we call partial-model order selection. We show by simulations that the proposed searching method gives better accuracies than the traditional one, especially for low signal-to-noise ratios over a wide range of model-order selection criteria (both information theoretic based and bootstrap-based). Also, we show that for some models the performance of the bootstrap-based criterion improves significantly by using the proposed partial-model selection searching method. Index Terms— Model order estimation, model selection, information theoretic criteria, bootstrap 1. INTRODUCTION Several model-order selection criteria can be applied to find the optimal order. Some of the more commonly used information theoretic-based procedures include Akaike’s information criterion (AIC) [1], corrected Akaike (AICc) [2], minimum description length (MDL) [3], normalized maximum likelihood (NML) [4], Hannan-Quinn criterion (HQC) [5], conditional model-order estimation (CME) [6], and the efficient detection criterion (EDC) [7]. From a practical point of view, it is difficult to decide which model order selection criterion to use. Many of them perform reasonably well when the signal-to-noise ratio (SNR) is high. The discrepancies in their performance, however, become more evident when the SNR is low. In those situations, the performance of the given technique is not only determined by the model structure (say a polynomial trend versus a Fourier series) but, more importantly, by the relative values of the parameters within the model. This makes the comparison between the model-order selection algorithms difficult as within the same model with a given order one could find an example for which one of the methods performs favourably well or fails [6, 8]. Our aim is to improve the performance of the model order selection criteria in cases where the SNR is low by considering a model-selection searching procedure that takes into account not only the full-model order search but also a partial model order search within the given model order. Understandably, the improvement in the performance of the model order estimation is at the expense of additional computational complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interacting with technology within a vehicle environment using a voice interface can greatly reduce the effects of driver distraction. Most current approaches to this problem only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to circumvent this is to use the visual modality in addition. However, capturing, storing and distributing audio-visual data in a vehicle environment is very costly and difficult. One current dataset available for such research is the AVICAR [1] database. Unfortunately this database is largely unusable due to timing mismatch between the two streams and in addition, no protocol is available. We have overcome this problem by re-synchronising the streams on the phone-number portion of the dataset and established a protocol for further research. This paper presents the first audio-visual results on this dataset for speaker-independent speech recognition. We hope this will serve as a catalyst for future research in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and use of a virtual assessment tool for a signal processing unit is described. It allows students to take a test from anywhere using a web browser to connect to the university server that hosts the test. While student responses are of the multiple choice type, they have to work out problems to arrive at the answer to be entered. CGI programming is used to verify student identification information and record their scores as well as provide immediate feedback after the test is complete. The tool has been used at QUT for the past 3 years and student feedback is discussed. The virtual assessment tool is an efficient alternative to marking written assignment reports that can often take more hours than actual lecture hall contact from a lecturer or tutor. It is especially attractive for very large classes that are now the norm at many universities in the first two years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the launch of the ‘Clean Delhi, Green Delhi’ campaign in 2003, slums have become a significant social and political issue in India’s capital city. Through this campaign, the state, in collaboration with Delhi’s middle class through the ‘Bhagidari system’ (literally translated as ‘participatory system’), aims to transform Delhi into a ‘world-class city’ that offers a sanitised, aesthetically appealing urban experience to its citizens and Western visitors. In 2007, Delhi won the bid to host the 2010 Commonwealth Games; since then, this agenda has acquired an urgent, almost violent, impetus to transform Delhi into an environmentally friendly, aesthetically appealing and ‘truly international city’. Slums and slum-dwellers, with their ‘filth, dirt, and noise’, have no place in this imagined city. The violence inflicted upon slum-dwellers, including the denial of their judicial rights, is justified on these accounts. In addition, the juridical discourse since 2000 has ‘re-problematised slums as ‘nuisance’. The rising antagonism of the middle-classes against the poor, supported by the state’s ambition to have a ‘world-class city’, has allowed a new rhetoric to situate the slums in the city. These representations articulate slums as homogenised spaces of experience and identity. The ‘illegal’ status of slum-dwellers, as encroachers upon public space, is stretched to involve ‘social, cultural, and moral’ decadence and depravity. This thesis is an ethnographic exploration of everyday life in a prominent slum settlement in Delhi. It sensually examines the social, cultural and political materiality of slums, and the relationship of slums with the middle class. In doing so, it highlights the politics of sensorial ordering of slums as ‘filthy, dirty, and noisy’ by the middle classes to calcify their position as ‘others’ in order to further segregate, exclude and discriminate the slums. The ethnographic experience in the slums, however, highlights a complex sensorial ordering and politics of its own. Not only are the interactions between diverse communities in slums highly restricted and sensually ordained, but the middle class is identified as a sensual ‘other’, and its sensual practices prohibited. This is significant in two ways. First, it highlights the multiplicity of social, cultural experience and engagement in the slums, thereby challenging its homogenised representation. Second, the ethnographic exploration allowed me to frame a distinct sense of self amongst the slums, which is denied in mainstream discourses, and allowed me to identify the slums’ own ’others’, middle class being one of them. This thesis highlights sound – its production, performances and articulations – as an act with social, cultural, and political implications and manifestations. ‘Noise’ can be understood as a political construct to identify ‘others’ – and both slum-dwellers and the middle classes identify different sonic practices as noise to situate the ‘other’ sonically. It is within this context that this thesis frames the position of Listener and Hearer, which corresponds to their social-political positions. These positions can be, and are, resisted and circumvented through sonic practices. For instance, amplification tactics in the Karimnagar slums, which are understood as ‘uncultured, callous activities to just create more noise’ by the slums’ middle-class neighbours, also serve definite purposes in shaping and navigating the space through the slums’ soundscapes, asserting a presence that is otherwise denied. Such tactics allow the residents to define their sonic territories and scope of sonic performances; they are significant in terms of exerting one’s position, territory and identity, and they are very important in subverting hierarchies. The residents of the Karimnagar slums have to negotiate many social, cultural, moral and political prejudices in their everyday lives. Their identity is constantly under scrutiny and threat. However, the sonic cultures and practices in the Karimnagar slums allow their residents to exert a definite sonic presence – which the middle class has to hear. The articulation of noise and silence is an act manifesting, referencing and resisting social, cultural, and political power and hierarchies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.