963 resultados para short-range transceiver
Resumo:
This study reports observations on the collection and characteristics of semen from free-range populations of flying fox in Brisbane, Australia. Semen was successfully recovered by electroejaculation from 107 of 115 wild flying foxes (Pteropus alecto, Pteropus poliocephalus and Pteropus scapulatus). A proportion of ejaculates collected from all three species contained seminal vesicle secretions, the incidence of which appeared related to breeding season. Ejaculate volume was small (5-160 mu L), requiring a specialised collection vessel and immediate extension to avoid desiccation. Sperm morphological abnormalities and characteristics are described for the first time. In two species (P. scapulatus and P. alecto), sperm quality varied with breeding season. Dilution in Tris-citratefructose buffer and subsequent incubation (37 degrees C) of Pteropus semen for 2-3 h appeared to have a negative impact on sperm motility and the percentage of sperm with intact plasma membranes and acrosomes and represents a concern for the potential development and use of assisted breeding technology in these species. Preliminary attempts to develop a short-term chilled preservation protocol for flying fox semen revealed that spenn viability (percentage motility and percentage live sperm with intact acrosomes) was significantly reduced after 102 h chilled storage at 5 degrees C; nevertheless, approximately 40% of the spermatozoa were still motile and contained intact acrosomes. Glycerol was neither protective nor detrimental to sperm survival during chilled storage. Microbial flora of the prepuce, urethra and semen of all species were isolated and their antibiotic susceptibility tested. Tetracycline, penicillin, ciprofloxacin, and ceftazidime were the most effective antibiotics in preventing growth of all identified bacteria; however, their effects on sperm survival were not investigated. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Objectives: To re-examine interhospital variation in 30 day survival after acute myocardial infarction ( AMI) 10 years on to see whether the appointment of new cardiologists and their involvement in emergency care has improved outcome after AMI. Design: Retrospective cohort study. Setting: Acute hospitals in Scotland. Participants: 61 484 patients with a first AMI over two time periods: 1988 - 1991; and 1998 - 2001. Main outcome measures: 30 day survival. Results: Between 1988 and 1991, median 30 day survival was 79.2% ( interhospital range 72.1 - 85.1%). The difference between highest and lowest was 13.0 percentage points ( age and sex adjusted, 12.1 percentage points). Between 1998 and 2001, median survival rose to 81.6% ( and range decreased to 78.0 - 85.6%) with a difference of 7.6 ( adjusted 8.8) percentage points. Admission hospital was an independent predictor of outcome at 30 days during the two time periods ( p< 0.001). Over the period 1988 - 1991, the odds ratio for death ranged, between hospitals, from 0.71 ( 95% confidence interval ( CI) 0.58 to 0.88) to 1.50 ( 95% CI 1.19 to 1.89) and for the period 1998 - 2001 from 0.82 ( 95% CI 0.60 to 1.13) to 1.46 ( 95% CI 1.07 to 1.99). The adjusted risk of death was significantly higher than average in nine of 26 hospitals between 1988 and 1991 but in only two hospitals between 1998 and 2001. Conclusions: The average 30 day case fatality rate after admission with an AMI has fallen substantially over the past 10 years in Scotland. Between-hospital variation is also considerably less notable because of better survival in the previously poorly performing hospitals. This suggests that the greater involvement of cardiologists in the management of AMI has paid dividends.
Resumo:
We use molecular dynamics simulations to compare the conformational structure and dynamics of a 21-base pair RNA sequence initially constructed according to the canonical A-RNA and A'-RNA forms in the presence of counterions and explicit water. Our study aims to add a dynamical perspective to the solid-state structural information that has been derived from X-ray data for these two characteristic forms of RNA. Analysis of the three main structural descriptors commonly used to differentiate between the two forms of RNA namely major groove width, inclination and the number of base pairs in a helical twist over a 30 ns simulation period reveals a flexible structure in aqueous solution with fluctuations in the values of these structural parameters encompassing the range between the two crystal forms and more. This provides evidence to suggest that the identification of distinct A-RNA and A'-RNA structures, while relevant in the crystalline form, may not be generally relevant in the context of RNA in the aqueous phase. The apparent structural flexibility observed in our simulations is likely to bear ramifications for the interactions of RNA with biological molecules (e.g. proteins) and non-biological molecules (e.g. non-viral gene delivery vectors). © CSIRO 2009.
Resumo:
The performance of the manufacturing sector has been a major factor contributing to Sweden's economic growth. This paper comprises eight short cases describing a range of Swedish organisations together with the principal features of their production function. The cases are intended to general discussion and provide a greater understanding of the technical and organisational factors which influence the efficiency of production systems.
Resumo:
This thesis presents details on progress made in the fabrication and application of short and novel structure fibre Bragg gratings. The basic theoretical concepts of in-fibre Bragg gratings and photosensitive mechanisms are introduced together with an overview of fabrication methods and applications presented to date. The fabrication of fibre Bragg gratings using a quadrupled Nd:YAG laser is presented and some of the issues of grating fabrication using a fabrication using a phasemask are investigated, including the variation of the separation of the fibre and phasemask, and other alignment issues. A new apodisation technique is presented, enabling the production of gratings with a wide range of spectral profiles. The technique is used to investigate the design and fabrication of length limited fibre Bragg gratings for use in telecommunication systems as filters. Application to devices designed for use in WDM systems is presented. The use of fibre Bragg gratings as high spatial resolution distributed sensors is investigated. Grating sensing arrays comprising very short apodised gratings are demonstrated and Chirped Moiré gratings are implemented as distributed sensors achieving high spatial resolution with miniature point sensing sub-elements. A novel grating sensing element designed to imitate an interferometer is also presented. Finally, the behaviour of gratings fabricated in Boron-Germania-co-doped fibre is investigated, revealing atypical behaviour of the Bragg wavelength during ageing.
Resumo:
The application of high-power voltage-source converters (VSCs) to multiterminal dc networks is attracting research interest. The development of VSC-based dc networks is constrained by the lack of operational experience, the immaturity of appropriate protective devices, and the lack of appropriate fault analysis techniques. VSCs are vulnerable to dc-cable short-circuit and ground faults due to the high discharge current from the dc-link capacitance. However, faults occurring along the interconnecting dc cables are most likely to threaten system operation. In this paper, cable faults in VSC-based dc networks are analyzed in detail with the identification and definition of the most serious stages of the fault that need to be avoided. A fault location method is proposed because this is a prerequisite for an effective design of a fault protection scheme. It is demonstrated that it is relatively easy to evaluate the distance to a short-circuit fault using voltage reference comparison. For the more difficult challenge of locating ground faults, a method of estimating both the ground resistance and the distance to the fault is proposed by analyzing the initial stage of the fault transient. Analysis of the proposed method is provided and is based on simulation results, with a range of fault resistances, distances, and operational conditions considered.
Resumo:
A broadly tunable quantum-dot based ultra-short pulse master oscillator power amplifier with different diffraction grating orders as an external-cavity resonance feedback is studied. A broader tuning range, narrower optical spectra as well as higher peak power spectal density (maximun of 1.37 W/nm) from the second-order diffraction beam are achieved compared to those from the first-order diffraction beam in spite of slightly broader pulse duration from the secondorder diffraction. © The Institution of Engineering and Technology 2013.
Resumo:
The behaviour of short fatigue cracks is shown to be relevant only to a limited number of engineering situations. Within these situations, further restrictions on the extent to which metallurgical control can be exerted to improve fatigue crack growth behaviour are identified. The degree of control remaining is discussed in terms of two separate regimes which are described as intrinsic and extrinsic crack growth resistance. These separate effects are highlighted by comparisons both within and between a wide range of alloy systems. The implications of such an analysis are discussed in terms of aerospace applications.
Resumo:
We investigate the feasibility of using in-fiber Bragg gratings for measuring acoustic fields in the megahertz range. We found that the acoustic coupling from the ultrasonic field to the grating leads to the formation of standing waves in the fiber. Because of these standing waves, the system response is complex and, as we show, the grating does not act as an effective probe. However, significant improvement in its performance can be gained by use of short gratings coupled with an appropriate desensitization of the fiber. A noise-limited pressure resolution of ˜4.5 × 10-3 atm/vHz was found.
Resumo:
We present novel Terahertz (THz) emitting optically pumped Quantum Dot (QD) photoconductive (PC) materials and antenna structures on their basis both for pulsed and CW pumping regimes. Full text Quantum dot and microantenna design - Presented here are design considerations for the semiconductor materials in our novel QD-based photoconductive antenna (PCA) structures, metallic microantenna designs, and their implementation as part of a complete THz source or transceiver system. Layers of implanted QDs can be used for the photocarrier lifetime shortening mechanism[1,2]. In our research we use InAs:GaAs QD structures of varying dot layer number and distributed Bragg reflector(DBR)reflectivity range. According to the observed dependence of carrier lifetimes on QD layer periodicity [3], it is reasonable to assume that electron lifetimes can be potentially reduced down to 0.45ps in such structures. Both of these features; long excitation wavelength and short carriers lifetime predict possible feasibility of QD antennas for THz generation and detection. In general, relatively simple antenna configurations were used here, including: coplanar stripline (CPS); Hertzian-type dipoles; bow-ties for broadband and log-spiral(LS)or log-periodic(LP)‘toothed’ geometriesfor a CW operation regime. Experimental results - Several lasers are used for antenna pumping: Ti:Sapphire femtosecond laser, as well as single-[4], double-[5] wavelength, and pulsed [6] QD lasers. For detection of the THz signal different schemes and devices were used, e.g. helium-cooled bolometer, Golay cell and a second PCA for coherent THz detection in a traditional time-domain measurement scheme.Fig.1shows the typical THz output power trend from a 5 um-gap LPQD PCA pumped using a tunable QD LD with optical pump spectrum shown in (b). Summary - QD-based THz systems have been demonstrated as a feasible and highly versatile solution. The implementation of QD LDs as pump sources could be a major step towards ultra-compact, electrically controllable transceiver system that would increase the scope of data analysis due to the high pulse repetition rates of such LDs [3], allowing real-time THz TDS and data acquisition. Future steps in development of such systems now lie in the further investigation of QD-based THz PCA structures and devices, particularly with regards to their compatibilitywith QD LDs as pump sources. [1]E. U. Rafailov et al., “Fast quantum-dot saturable absorber for passive mode-locking of solid-State lasers,”Photon.Tech.Lett., IEEE, vol. 16 pp. 2439-2441(2004) [2]E. Estacio, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures. Appl.Phys.Lett., vol. 94 pp. 232104 (2009) [3]C. Kadow et al., “Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett., vol. 75 pp. 3548-3550 (1999) [4]T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett., vol. 101(2012) [5]R. Leyman, D. I. Nikitichev, N. Bazieva, and E. U. Rafailov, “Multimodal spectral control of a quantum-dot diode laser for THz difference frequency generation,” Appl. Phys. Lett., vol. 99 (2011) [6]K.G. Wilcox, M. Butkus, I. Farrer, D.A. Ritchie, A. Tropper, E.U. Rafailov, “Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser, ” Appl. Phys. Lett. Vol 94, 2511 © 2014 IEEE.
Resumo:
This paper examines whether the observed long memory behavior of log-range series is to some extent spurious and whether it can be explained by the presence of structural breaks. Utilizing stock market data we show that the characterization of log-range series as long memory processes can be a strong assumption. Moreover, we find that all examined series experience a large number of significant breaks. Once the breaks are accounted for, the volatility persistence is eliminated. Overall, the findings suggest that volatility can be adequately represented, at least in-sample, through a multiple breaks process and a short run component.
Resumo:
Short-chain fatty acids play crucial roles in a range of physiological functions. However, the effects of short-chain fatty acids on brown adipose tissue have not been fully investigated. We examined the role of acetate, a short-chain fatty acid formed by fermentation in the gut, in the regulation of brown adipocyte metabolism. Our results show that acetate up-regulates adipocyte protein 2, peroxisomal proliferator-activated receptor-γ coactivator-1α, and uncoupling protein-1 expression and affects the morphological changes of brown adipocytes during adipogenesis. Moreover, an increase in mitochondrial biogenesis was observed after acetate treatment. Acetate also elicited the activation of ERK and cAMP response element-binding protein, and these responses were sensitive to G(i/o)-type G protein inactivator, Gβγ-subunit inhibitor, phospholipase C inhibitor, and MAPK kinase inhibitor, indicating a role for the G(i/o)βγ/phospholipase C/protein kinase C/MAPK kinase signaling pathway in these responses. These effects of acetate were mimicked by treatment with 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide, a synthetic G protein-coupled receptor 43 (GPR43) agonist and were impaired in GPR43 knockdown cells. Taken together, our results indicate that acetate may have important physiological roles in brown adipocytes through the activation of GPR43.
Resumo:
A character discovering and testing the limits of his emotional or psychological range most interests me. What will he choose to do? Stay within his old boundaries? Or try and go beyond them? What does he learn about himself in the process? And, finally, what price will be exacted, either for his staying where he is, or for his choosing a new level of self-knowledge? "The Short Reign Of Sultan Osman and Other Stories" is a collection of short stories set in either the United States, Greece, or Brazil, and ranging in time from 1972 to today. Each story presents its protagonist with challenges unique to a specific time and place. In most of these stories, the protagonists are driven by an urge for love or for mastery, and these urges send them across landscapes of delusion or folly before they can arrive at some sense of self-knowledge.
Resumo:
Oscillating Water Column (OWC) is one type of promising wave energy devices due to its obvious advantage over many other wave energy converters: no moving component in sea water. Two types of OWCs (bottom-fixed and floating) have been widely investigated, and the bottom-fixed OWCs have been very successful in several practical applications. Recently, the proposal of massive wave energy production and the availability of wave energy have pushed OWC applications from near-shore to deeper water regions where floating OWCs are a better choice. For an OWC under sea waves, the air flow driving air turbine to generate electricity is a random process. In such a working condition, single design/operation point is nonexistent. To improve energy extraction, and to optimise the performance of the device, a system capable of controlling the air turbine rotation speed is desirable. To achieve that, this paper presents a short-term prediction of the random, process by an artificial neural network (ANN), which can provide near-future information for the control system. In this research, ANN is explored and tuned for a better prediction of the airflow (as well as the device motions for a wide application). It is found that, by carefully constructing ANN platform and optimizing the relevant parameters, ANN is capable of predicting the random process a few steps ahead of the real, time with a good accuracy. More importantly, the tuned ANN works for a large range of different types of random, process.