926 resultados para short chain carboxilic acids
Resumo:
Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of the branched-chain amino acids. The reaction catalyzed consists of two stages, the first of which is an alkyl migration from one carbon atom to its neighbour. The likely transition state is therefore a cyclopropane derivative, and cyclopropane-1,1-dicarboxylate(CPD) has been reported to inhibit the Escherichia coli enzyme. In addition, this compound causes the accumulation of the substrate of ketol-acid reductoisomerase in plants. Here, we investigate the inhibition of the purified rice enzyme. The cDNA was cloned, and the recombinant protein was expressed in E. coli, purified and characterized kinetically. The purified enzyme is strongly inhibited by cyclopropane-1,1-dicarboxylate, with an inhibition constant of 90 nM. The inhibition is time-dependent and this is due to the low rate constants for formation (2.63 X 10(5) M-1 min(-1)) and dissociation (2.37 x 10(-2) min(-1)) of the enzyme-inhibitor complex. Other cyclopropane derivatives are much weaker inhibitors while dimethylmalonate is moderately effective. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Isoleucine, leucine and valine are synthesized via a common pathway in which the first reaction is catalysed by AHAS (acetohydroxyacid synthase; EC 2.2.1.6). This heterotetrameric enzyme is composed of a larger subunit that contains the catalytic machinery and a smaller subunit that plays a regulatory role. The RSU (regulatory subunit) enhances the activity of the CSU (catalytic sub unit) and mediates end-product inhibition by one or more of the branched-chain amino acids, usually valine. Fungal AHAS differs front that in other organisms in that the inhibition by valine is reversed by MgATP. The fungal AHAS RSU also differs from that in other organisms in that it contains a sequence insert. We suggest that this insert may form the MgATP-binding site and we have tested this hypothesis by mutating ten highly conserved amino acid residues of the yeast AHAS RSU. The modified subunits were tested for their ability to activate the yeast AHAS CSU, to confer sensitivity to valine inhibition and to mediate reversal of the inhibition by MgATP. All but one of the mutations resulted in substantial changes in the properties of the RSU. Unexpectedly, four of them gave a protein that required mgATP in order for strong stimulation of the CSU and valine inhibition to be observed. A model to explain this result is proposed. Five of the mutations abolished MgATP activation and are suggested to constitute the binding site for this modulator.
Resumo:
Oxidised LDL accumulates in macrophages following scavenger receptor (SR) uptake. The expression of the SR, CD36, is increased by oxidised LDL. The signalling molecule, ceramide, can modulate intracellular peroxides and increase lipid peroxidation. Ceramide also accumulates in atherosclerotic plaques. Thus, we have examined whether ceramide can modulate CD36 expression and function in human monocyte/macrophages. Addition of synthetic short chain ceramides or the action of sphingomyelinase to generate physiological long chain ceramides in situ caused significant reductions in CD36 expression by monocytes/macrophages which was not due to inhibition of mRNA expression. Inhibition of proteasomal degradation using lactacystin had no effect on CD36 expression, however, flow cytometric analysis of permeabilised cells suggested an intracellular trafficking blockade. Ceramide treated monocytes/macrophages showed dose dependent reduction in oxidised LDL uptake. Taken together, it is suggested that ceramide blocks the transport of CD36 to the membrane of monocytes/macrophages, thereby preventing uptake of oxidised LDL. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Ceramide (a sphingolipid) and reactive oxygen species are each partly responsible for intracellular signal transduction in response to a variety of agents. It has been reported that ceramide and reactive oxygen species are intimately linked and show reciprocal regulation [Liu, Andreieu-Abadie, Levade, Zhang, Obeid and Hannun (1998) J. Biol. Chem. 273, 11313-11320]. Utilizing synthetic, short-chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide formation or using stimulation of CD95 to induce ceramide formation, we found that the principal redox-altering property of ceramide is to lower the [peroxide]cyt (cytosolic peroxide concentration). Apoptosis of Jurkat T-cells, primary resting and phytohaemagglutinin-activated human peripheral blood T-lymphocytes was preceded by a loss in [peroxide]cyt, as measured by the peroxide-sensitive probe 2′,7′-dichlorofluorescein diacetate (also reflected in a lower rate of superoxide dismutase-inhibitable cytochrome c reduction), and this was not associated with a loss of membrane integrity. Where growth arrest of U937 monocytes was observed without a loss of membrane integrity, the decrease in [peroxide]cyt was of a lower magnitude when compared with that preceding the onset of apoptosis in T-cells. Furthermore, decreasing the cytosolic peroxide level in U937 monocytes before the application of synthetic ceramide by pretreatment with either of the antioxidants N-acetyl cysteine or glutathione conferred apoptosis. However, N-acetyl cysteine or glutathione did not affect the kinetics or magnitude of ceramide-induced apoptosis of Jurkat T-cells. Therefore the primary redox effect of cellular ceramide accumulation is to lower the [peroxide]cyt of both primary and immortalized cells, the magnitude of which dictates the cellular response.
Resumo:
Ceramide (a sphingolipid) and reactive oxygen species (ROS) are each partly responsible for the intracellular signal transduction of a variety of physiological, pharmacological or environmental agents. It has been reported that synthesis of ceramide and ROS are intimately linked, and show reciprocal regulation. The levels of ceramide are reported to be elevated in atherosclerotic plaques providing circumstantial evidence for a pro-atherogenic role for ceramide. Indeed, LDL may be important sources of ceramide from sphingomyelin, where it promotes LDL aggregation. Using synthetic, short chain ceramides to mimic the cellular responses to fluctuations in natural endogenous ceramides, we have investigated ceramide effects on both intracellular redox state (as glutathione and ROS) and redox-sensitive gene expression, specifically the scavenger receptor CD36 (using RT-PCR and flow cytometry), in U937 monocytes and macrophages. We describe that the principal redox altering properties of ceramide are to lower cytosolic peroxide and to increase mitochondrial ROS formation, where growth arrest of U937 monocytes is also observed. In addition, cellular glutathione was depleted, which was independent of an increase in glutathione peroxidase activity. Examination of the effects of ceramide on stress induced CD36 expression in macrophages, revealed a dose dependent reduction in CD36 mRNA and protein levels, which was mimicked by N-acetyl cysteine. Taken together, these data suggest that ceramides differentially affect ROS within different cellular compartments, and that loss of cytosolic peroxide inhibits expression of the redox sensitive gene, CD36. This may attenuate both the uptake of oxidised LDL and the interaction of HDL with macrophages. The resulting sequelae in vivo remain to be determined.
Resumo:
Reactive oxygen species (ROS) and ceramide are each partly responsible for the signal transduction of a variety of extracellular agents. Furthermore, the application of synthetic, short-chain ceramides mimics the cellular responses to these extracellular agents. However, the significance of ROS involvement in ceramide signaling pathways is poorly understood. Here we describe that the (cellular responses to C2-/C6-ceramide of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells are preceded by a rise in mitochondrial peroxide production. In Jurkat T-cells, this is associated with a large time- and dose-dependent loss of cellular glutathione. However, in U937 monocytes, glutathione loss is transient. Differences in the magnitude and kinetics of this alteration in cellular redox state associate with discrete outcomes, namely growth arrest or apoptosis. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.
Resumo:
Metallocene catalyzed linear low density polyethylene (m-LLDPE) is a new generation of olefin copolymer. Based on the more recently developed metallocene-type catalysts, m-LLDPE can be synthesized with exactly controlled short chain branches and stereo-regular microstructure. The unique properties of these polymers have led to their applications in many areas. As a result, it is important to have a good understanding of the oxidation mechanism of m-LLDPE during melt processing in order to develop more effective stabilisation systems and continue to increase the performance of the material. The primary objectives of this work were, firstly, to investigate the oxidative degradation mechanisms of m-LLDPE polymers having different comonomer (I-octene) content during melt processing. Secondly, to examine the effectiveness of some commercial antioxidants on the stabilisation of m-LLDPE melt. A Ziegler-polymerized LLDPE (z-LLDPE) based on the same comonomer was chosen and processed under the same conditions for comparison with the metallocene polymers. The LLDPE polymers were processed using an internal mixer (torque rheometer, TR) and a co-rotating twin-screw extruder (TSE). The effects of processing variables (time, temperature) on the rheological (MI, MWD, rheometry) and molecular (unsaturation type and content, carbonyl compounds, chain branching) characteristics of the processed polymers were examined. It was found that the catalyst type (metallocene or Ziegler) and comonomer content of the polymers have great impact on their oxidative degradation behavior (crosslinking or chain scission) during melt processing. The metallocene polymers mainly underwent chain scission at lower temperature (<220°C) but crosslinking became predominant at higher temperature for both TR and TSE processed polymers. Generally, the more comonomers the m-LLDPE contains, a larger extent of chain scission can be expected. In contrast, crosslinking reactions were shown to be always dominant in the case of the Ziegler LLDPE. Furthermore, it is clear that the molecular weight distribution (MWD) of all LLDPE became broader after processing and tended generally to be broader at elevated temperatures and more extrusion passes. So, it can be concluded that crosslinking and chain scission are temperature dependent and occur simultaneously as competing reactions during melt processing. Vinyl is considered to be the most important unsaturated group leading to polymer crosslinking as its concentration in all the LLDPE decreased after processing. Carbonyl compounds were produced during LLDPE melt processing and ketones were shown to be the most imp0l1ant carbonyl-containing products in all processed polymers. The carbonyl concentration generally increased with temperature and extrusion passes, and the higher carbonyl content fonned in processed z-LLDPE and m-LLDPE polymers having higher comonomer content indicates their higher susceptibility of oxidative degradation. Hindered phenol and lactone antioxidants were shown to be effective in the stabilization of m-LLDPE melt when they were singly used in TSE extrusion. The combination of hindered phenol and phosphite has synergistic effect on m-LLDPE stabilization and the phenol-phosphite-Iactone mixture imparted the polymers with good stability during extrusion, especially for m-LLDPE with higher comonomer content.
Resumo:
Reactive oxygen species (ROS) and the sphingolipid ceramide are each partly responsible for the intracellular signal transduction of a variety of physiological, pharmacological or environmental agents. Furthermore, the enhanced production of many of these agents, that utilise ROS and ceramide as signalling intermediates, is associated with the aetiologies of several vascular diseases (e.g. atherosclerosis) or disorders of inflammatory origin (e.g. rheumatoid arthritis; RA). Excessive monocyte recruitment and uncontrolled T cell activation are both strongly implicated in the chronic inflammatory responses that are associated with these pathologies. Therefore the aims of this thesis are (1) to further elucidate the cellular responses to modulations in intracellular ceramide/ROS levels in monocytes and T cells, in order to help resolve the mechanisms of progression of these diseases and (2) to examine both existing agents (methotrexate) and novel targets for possible therapeutic manipulation. Utilising synthetic, short chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide or, stimulation of CD95 to induce ceramide formation, it is described here that ceramide targets and manipulates two discrete sites responsible for ROS generation, preceding the cellular responses of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells. In both cell types, transient elevations in mitochondrial ROS generation were observed. However, the prominent redox altering effects appear to be the ceramide-mediated reduction in cytosolic peroxide, the magnitude of which dictates in part the cellular response in U937 monocytes, Jurkat T-cells and primary human peripheral blood resting or PHA-activated T-cells in vitro. The application of synthetic ceramides to U937 monocytes for short (2 hours) or long (16 hours) treatment periods reduced the membrane expression of proteins associated with cell-cell interaction. Furthermore, ceramide treated U937 monocytes demonstrated reduced adhesion to 5 or 24 hour LPS activated human umbilical vein endothelial cells (HUVEC) but not resting HUVEC. Consequently it is hypothesised that the targeted treatment of monocytes from patients with cardiovascular diseases with short chain synthetic ceramide may reduce disease progression. Herein, the anti-inflammatory and immunosuppressant drug, methotrexate, is described to require ROS production for the induction of cytostasis or cytotoxicity in U937 monocytes and Jurkat T-cells respectively. Further, ROS are critical for methotrexate to abrogate monocyte interaction with activated HUVEC in vitro. The histological feature of RA of enhanced infiltration, survivability and hyporesponsiveness of T-cells within the diseased synovium has been suggested to arise from aberrant signalling. No difference in the concentrations of endogenous T-cell ceramide, the related lipid diacylglycerol (DAG) and cytosolic peroxide ex vivo was observed. TCR activation following PHA exposure in vitro for 72 hours did not induced maintained perturbations in DAG or ceramide in T-cells from RA patients or healthy individuals. However, T-cells from RA patients failed to upregulate cytosolic peroxide in response to PHA, unlike those from normals, despite expressing identical levels of the activation marker CD25. This inability to upregulate cytosolic peroxide may contribute to the T-cell pathology associated with RA by affecting the signalling capacity of redox sensitive biomolecules. These data highlight the importance of two distinctive cellular pools of ROS in mediating complex biological events associated with inflammatory disease and suggest that modulation of cellular ceramides represents a novel therapeutic strategy to minimise monocyte recruitment.
Resumo:
The adsorption of two qroups of nonionic surface active agents and a series of hiqh molecular weiqht hydrophilic polymer fractions onto a polystyrene latex and a drug substance diloxanide furoate B.P. has been investigated. The presence of pores within the drug surface has been demonstrated and this is shown to increase the adsorption of low molecular weight polymer species. Differences in the maximum amount of polymer adsorbed at both solid-solution interfaces have been ascribed to the different hydrophobicities of the surface as determined by contact angle measurements. Adsorbed layer thicknesses of polymer on polystyrene latex have been determined by three techniques: microelectrophoresis, intensity fluctuation spectroscopy and by viscometric means. These results, in combination with adsorption data, were used to interpret the configuration of the adsorbed polymer molecules at the interface. The type of druq suspension produced on adsorbing the different polymers in the absence of electrostatic stabilization was correlated with theoretical prediuctions of suspension characteristics deduced from potential energy diagrams, The agreement was good for the adsorption of short chain length surfactants, but for the polyvinylalcohols, discrepancies were found between experiment and theory. This was attributed to the inappropriate use of a mean segment density approximation within the adsorbed layer to calculate attractive potentials between particles. A maximum in the redispersibility values for suspensions coated with adsorbed nonylphenylethoxylates was attributed to "partial static stabilization" of the particles in conjunction with the attractive forces operating in the sediment between bare surface patches on neighbouring particles. No significant change in the dissolution of the drug was observed when nonylphenylethoxylates were adsorbed due to desorption upon contact with the dissolution medium. Pluronic F68 and all the polyvinylalcohol fractions caused a reduction in the dissolution rate which is explained by the decreased diffusion of drug' through the adsorbed polymer layer.
Resumo:
Atherosclerosis is the principal cause of death in the United States, Europe and much of Asia. During the last decade, inflammation has been suggested to play a key role in the development of atherosclerosis. Reactive oxygen species (ROS) released during inflammation additionally oxidize LDL, which is subsequently taken up in an unregulated way through scavenger receptors on macrophages to form foam cells, the hallmark of atherosclerotic lesions. Previous work has shown that the lipid ceramide, which is found in aggregated LDL and in atherosclerotic plaques, decreases intracellular peroxide most likely through reducing NADPH oxidase activity. Ceramide is an important component of membrane microdomains called lipid rafts which are important for membrane protein function. Endogenous ceramide enhances lipid raft f'ormation and alters theirs composition. NADPH oxidase membrane subunits cytochrome b558 (which includes gp91) strongly associates with lipid rafts Therefore present study investigated whether short chain ceramides reduce NADPH oxidase in U937 monocytes by disrurting the membrane component of NADPH oxidase. Results showed that C2 ceramide alters the distribution of raft marker, flottillin and the raft environment. NADPH oxidase membrane component gp9J phox and cytosolic component p47 phox were identified in rafts. C2 ceramide reduces both gp91 and p47 phox in rafts, which leads to the decrease of peroxide production by NADPH oxidase. Ceramide is also an important second messenger involved in many different signaling pathways associated with atherogenesis from the activation of sphingomyelinase (SMase). It has been reported that SMase enhances LDL receptor mediated LDL endocytosis. However, no study has been done to investigate the effect of ceramide on scavenger receptors such as CD36 and oxidized LDL (OxLDL) uptake. CD36 is the major recertor far OxLDL. Reduced CD36 expression results in less foam cell formation and less atherosclerotic lesion without disrupting the clearance of OxLDL from plasma. This thesis shows that ceramides significantly reduce CD36 surface expression on U937 monocytes, macrophages and human primary monocytes. This effect is seen using both synthetic short chain ceramide and SMase catalysed long chain ceramide treatment. To investigate whether the effect of ceramide on CD36 is functional, OxLOL uptake was measured in ceramide treated cells. Ceramide reduces the uptake of OxLOL by both U937 monocytes and PMA-differentiated macrophages. The mechanism of ceramide reduction of CD36 expression was studied by measuring the surface antigen using flow cytometry and fluorescence microscopy, whole cellular CD36 expression and shedding of C036 by Western blotting of cell lysates and cell culture supernatants and mRNA level of CD36 using RT-PCR. Ceramide reduces shedding of CD36, activates mRNA expression of CD36 and induces intracellular CD36 accumulation probably through retaining the receptor inside cells. In summary, ceramides modulate several of the processes involved in LOL oxidation and uptake by CD36 receptors on monocytes/macrophages in a way which may protect against atherosclerosis.
Resumo:
The melt stabilising efficiency of antioxidants with different structures based on hindered phenols, phosphite esters, phosphonite and a lactone was examined during multi-pass extrusions at 265 °C in three metallocene ethylene-1-octene copolymers (m-LLDPE) having different extent of short chain branching (SCB) and one Zeigler copolymer (z-LLDPE) containing the same level of SCB corresponding to one of the m-LLDPE polymers. The effect of the different antioxidants, when used separately and in combination, was investigated by characterising the changes in the polymer's rheological behaviour, colour formation and structural changes based on unsaturated groups and carbonyl content during five multi-pass extrusions. The results showed that all stabilisation systems examined offered higher efficiency in the metallocene polymers compared to the Zeigler. The effect of the extent of SCB in the metallocene polymers on the stabilising efficacy of the antioxidant systems was also examined, and it was shown that it had a significant effect, with both single and combinations of antioxidants giving higher efficiency in the m-LLDPE polymer containing higher extent of SCB. The presence of the lactone HP136 in mixtures containing hindered phenol–phosphite antioxidant systems gave a higher melt stabilisation efficiency than in its absence and this has been attributed to a co-operative antioxidant reaction steps that take place between the antioxidants resulting in the possible regeneration of the lactone antioxidant through a redox reaction. In all the metallocene PE polymers examined, the biologically hindered phenol, Irganox E, was shown to be more effective than the conventionally hindered phenol Irganox 1076, when examined alone or in combination with phosphite esters.
Resumo:
The component spectra of a mixture of isomers with nearly identical diffusion coefficients cannot normally be distinguished in a standard diffusion-ordered spectroscopy (DOSY) experiment but can often be easily resolved using matrix-assisted DOSY, in which diffusion behaviour is manipulated by the addition of a co-solute such as a surfactant. Relatively little is currently known about the conditions required for such a separation, for example, how the choice between normal and reverse micelles affects separation or how the isomer structures themselves affect the resolution. The aim of this study was to explore the application of sodium dodecyl sulfate (SDS) normal micelles in aqueous solution and sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) aggregates in chloroform, at a range of concentrations, to the diffusion resolution of some simple model sets of isomers such as monomethoxyphenols and short chain alcohols. It is shown that SDS micelles offer better resolution where these isomers differ in the position of a hydroxyl group, whereas AOT aggregates are more effective for isomers differing in the position of a methyl group. For both the normal SDS micelles and the less well-defined AOT aggregates, differences in the resolution of the isomers can in part be rationalised in terms of differing degrees of hydrophobicity, amphiphilicity and steric effects. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Objectives: To determine the sensitivity and specificity of a novel ELISA for the serodiagnosis of surgical site infection (SSI) due to staphylococci following median sternotomy. Methods: Twelve patients with a superficial sternal SSI and 19 with a deep sternal SSI due to Staphylococcus aureus were compared with 37 control patients who also underwent median sternotomy for cardiac surgery but exhibited no microbiological or clinical symptoms of infection. A further five patients with sternal SSI due to coagulase-negative (CoNS) staphylococci were studied. An ELISA incorporating a recently recognised exocellular short chain form of lipoteichoic acid (lipid S) recovered from CoNS, was used to determine serum levels of anti-lipid S IgG in all patient groups. Results: Serum anti-lipid S IgG titres of patients with sternal SSI due to S. aureus were significantly higher than the control patients (P<0.0001). In addition, patients with deep sternal SSI had significantly higher serum anti-lipid S IgG titres than patients with superficial sternal SSI (P=0.03). Serum anti-lipid S IgG titres of patients with sternal SSI due to CoNS were significantly higher than the control patients (P=0.001). Conclusion: The lipid S ELISA may facilitate the diagnosis of sternal SSI due to S. aureus and could also be of value with infection due to CoNS. © 2005 Published by Elsevier Ltd. on behalf of The Bristish Infection Society.